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ABSTRACT

The restoration of incoherent optical objects which have been
diffracted by an optical system and corrupted by detector and additive
backgiound noise is considersd. The approach to the problem is
basically numerical and considers operating directly on the noisy image
and point spread function rather than the Fourier transform of these
quantities. The effects of noise and the ' se of a priori information
in the restoration process are given particular attention,

Several "optimrum! estimates of the object intensity distribution

are considered. Based on statistics which have been verified iu practice,

the Baye's, maximum a posteriori, maximum likelihood and mezn squave

exrror estimates of the object intensity distribution are obtained. These
statistical estimates are compared mathematically and in many cases
numerically to other non;etatintical estimates formulated from cont:rol
theory and dynamic programming. Extensive numerical results have
been obtained for the restoration of various one:dimensional objects in

the presence of noise. Two monochromatic ""point sources" in the

presence of noise are shown to be resolved when separated by 1/5 of the

Rayleigh criterion distance. Numerical results are also shown for the
mean gquare error as a function of a priori information, the measuring

scheme chosen and diffraction,

RN 11,150, I



TABLE OF CONTENTS

INTRODUCTION . ¢ ¢« ¢ o ¢ ¢ o o o o o o
Statement of the Problem . . . « « « « ¢ o
Approaches to the Problem ¢ e+ e o s e e e
Planofthe Paper . .+ « o « ¢ o o o+ o o

THE IMAGING EQUATION

The Optical Configuration . . . « . .« .« «
The Scalax Theory . . .« ¢« =« « ¢ ¢ o o
Use of Huygen' s Principle and the Geometric Assumptions
The Concept of Diffraction . . . . . . .+ . =
The Numerical Technique . . . . .« + « <« &

NUMERICAL SOLUTIONS AND METHODS IN THE ABSENCE
OF NOISE: . ] ] ] ] [ [ ] . . ] * L ]

Review of the Control Theory Approach
Other Constraints . . . ¢« =« « « ¢ o o o
Sequential Approximations . . . « . o o .
Dynamic Programming Soluticns . . . . .« =«
ANALYTIC RESULTS WITH NOISE FOR SPECL}k ~ CASES
Detection Error vs. Diffractionr . . . .« . .« .

Separation Error Bound v. . Diff>action

OBJECTESTIMATION . . ¢« ¢ ¢ o ¢ o o o

Noise Model ] . . . . . . . . . . . .

Discussion of the Baysean Approach .

i

Page

10
18

20

23
23
28
30.
32
47
48
63
70
71

76




Minimum MSE Approach

Minimum Distance Estimation

SIMULATED OBJECT RESTORATIONS
Objects to be Restored
Image and A Matrix Accuracy

Improvement Criterion

Results of thu Various Restoration Schemes

MSE VARIATION--CHOOSING THE A MATRIX PARAMETERS

A Matrix Parameters

o

(4

MSE ve. A Matrix Parameters for Large A Priori

Uncertainty

MSE vs. A Matrix Parameters for Finite A Prior

Information

Choosing the A Matrix Parameters

SUMMARY AND CONCLUSIONS

Synopsis of the Paper

Future Research

APPENDIX . . .

Two Dimensional Gauss Quadrature
Recurrence Relation for the Area Constraint

Computer Programming

LITERATURE CITED

82
95
98
99
101
111
114
175

176

177

181
184
193
193
196
198
198
199
201

217

iv

T L R RS AL it e bbb ki



LIST OF FIGURES

Figure Page
l Opticalconfiguration . ., . . . ¢ ¢ 4 4 o o o & o 7
2, bBiock diagram of the optical configuration , ., . . . . . 50
3, Probability of error vs. the reciprocal of the diffruction
TAHOR & o 4 o ¢ o o o ¢ o o o o 0 o o o o . B9
4. Probability of error ve, log (1/e2)forR=100 . . . . . 61
5. The db loss, referenced at R = 0, vs, the reciprocal of the
diffractionratio R . o o ¢ ¢ o o ¢ o o o ¢ ¢ o . 62
6. The db loss, referenced at P = , 05, vs, the reciprocal of the
dxffractionratioR...............64
7. The db loss vs, 1/R for a fixed aperture and noise variance . 68
8., Block diagram of the imesging process with noise sourcez . , 72
9. Thelog (l/o :) vs., the mean number of significant figures . , 107
10, Informationblocke o o o o ¢ o o o ¢ o ¢ o o o o114
11, Thelog (l/o ) ve, logo_ 2 for various ratios of o ','lo' o« o o117
12, Restoration of a uniform pulse (R =1.0) using (32) . . . . 119
13. Restoration of a uniform pulse (R =1,0)using (32) . . . . 120
14, Restoration of a uniform pulse (R = !,0)using (44} ., ., . , 122
15, Restoration of a uniform pulse (R = 10,0) using (44) . . . . 124
16, Restoration of a uniform pulse (R = 10, 0) using (155) with
R2D e o o o o o o o o o o o 6 o o ¢ o 3 o o128
17, Restoration of a uniform pulse (R = 10, 0) using (155) with
X=D s o 5 o o o o o o o s o o o o o o o o o126



Figure Page

18, Restoration of a uniform pulse (R = 10, 0) using (155) with

i.booooooooooooooooooblz7

19. Restozation of a uniform pulse (R = 10, 0) using (155) with

i.b0000000000000000000128

20, Restoration of a uniform pulse (R = 10, 0) using (155) witl

XmBD . 4 4 o 0 0 s 0 v s e 6 s e o e e o o 129
21, Restoration of the pulss cos (va/2) using (155) with2=b , , 131
22, Restoration of the pulse cos (2wa) using (155) withx =b , ., 132
23, Restoration if the pulse cos (2na) using (155) withXx =b , , 133
24, Rastoration of the pulse cos (2wa) using (155) withx =b , , 134
25, Restoration of the pulse cos {2ra) using (155) withx=b ., , 135
26, Restoration of the pulse cos (2na) using (155) withx=b ., ., 136
27, Restoration of split uniform pulses using (155) withx =b , . 138
28, Restoration of split uniform pulses using (155) with X =b . . 139
29, Restoration of split uniform pulses using (155) with ;': =b . . 140
30, Restoration of split uniform pulses using (155) with X =b . ., 141
31. Restoration of split uniform pulses using (155) with ?: =b , . 142
32, Restoration of split uniform pulses using (155) with X =b . . 143

33, Restoration of the pulses cos [20 = (a + . 225)] using
(155) withX = b e & % 6 o6 ¢ e & o % & o o o a2 oo 145

34, Restoration of the pulses cos [20 ¥ (a + .225)] using
(155)Wiﬂli'booooooooooooo-..l46

35, Restoration of the pulses cos [20 w {a + .225))] using
(155) Withi’b ® 6 o o o o6 o o e & s s @+ s s o 147

L iE g TN E_ats e e h it peaiom e ha amean s e A a e TR L s S TR b s s A




S A e

Figure Page
36, Reatorzuon of the pulses cos [20 v (« + . 225)] using (155)
Wi‘h x=b, ¢ o o 8 & 8 s e e 8 e s e e e e e 148
37. Restoration of the pulses cos [ 20 v (« + . 225)] using (155)
with x Z2De 4 o o o 6 0 v o * s e e e e o <« o 149
38, Restoration of the pulses cos [100 v (« + . 095)] uling
(155) withi = b e o o o o e e & e e e e o s e« o 185
3¢, Restoration of the pulses cos [100 = (a + . 095)] using
(155) With x = b L [ ] o o L ] L ] L L ] [ L ] [ ] & L] o 152
40, Restoration of the pulse cos (2na) using (155) with®=b . . 154
41, Restoration of the pulse cos (2na) using (155) with=b . , 155
42, Restoration of the pulse cos (2wa) using (155) withx =b . . 156
43, Restoration of the pulse cos (2wa) using {155) withx=b . . 157
44,

49.

50,

51,

Restoration of the pulse cos (2na) using (155) withx=b ., . 158

Restoration of the pulse cos (2wa) using (155) withx=ab . . 159

Restoration of a uniform pulse (R = 1, 0) using (155)

Withinbo . . . 161

L] L] L] L L L] * L] L L L] L L] [

Comparison of the noisy and the smoothed images . . . . 163

Restoration using the smoothed muge of Figure 47. The
MSE solution (155) wu used with X equal to the smoothed
imzeo The ratio I(d ) 2218 ¢ ¢ ¢ o o o s 2 e s 164

Restoration of the pulse cos (2wa) using unity weights in (155)
with i ] b e e e e ® 6 ® e v 8 & ¢ o o & e o 165

Restoration of the pulse cos (2wa) using Simpson's quadrature
M(ISS)With;ﬁﬂb e & & & 9 2 2 * e & o ¢ o e @ 166

Restoration of the pulse cos (2wa) using Gauss quadrature
M(155)with§=b. ¢ e e e e 8 8 & & & 8 e s o 167



viii

Figure Page
52, The comparison of the MSE and Phillips-Twomey

solutions . . . 4 . 4 6 0 4 4 s e e s e e . . 169
33, Restoration using the dynamic programming version of (47),

‘B‘nm. 1965) . L 4 [ ] L] ® ® [ ] * L L ] L ] * * ] !71
54. Restoration using the dynamic prograraming version of (47),

‘Bml 1965) . o L] . . [ . . . . . [} . . [ 172
55, Restoration using the dynamic programming version of (47),

(P Mm‘n. 1965) L4 L4 * . L] * [ (] . . . . [ . . 173
56, Restoration using the dynamic programming solution (78) . . 174
57, MSEIU': vs. R for varicus values of R1 when ¢ : =, M=2,

md wi = l’ o . [ ] . . [ . . . . [ [ ] * * [ ] . [} 178
58, MSE/r%vs. RforRl =1,0andRl = 2,0 whenol =0, M =3,

mdwi.loo . . . [ . [ . ] P L [} [} . L] . . ] 179
59. Comparison of MSEIu':‘ M vs. R for Rl = 1. 0 for the cases

when M=2andM=3, , o ¢ ¢ o ¢ o o ¢ s o o o 130
60, The log (MSE/e2) vs, log (r2/02) for various A matrix

p‘m&t‘r values Wheﬂ Wi 21,0 o 4 ¢ ¢ e e o & o o 182
61, Measuring and predicting intervals superimposed with the point

sprsad function for the top four curves in Figure 60. The

symbols MI and PI reoresent, respectively, the measuring and

predictingintervals « o+ ¢ o o o o o ¢ o o o o o 18
62, Curves of MSEIo': vs, the ratio a':ltr:, showing the region

used in the simulated restorationg. » ¢« « o ¢ o« o o o« 185



INTRODUCTION

Statement of the Problem

All objects which are inputs to a physically realizable optical
imaging system emerge from the system as imperiect representations
of the origina. object. Tbis object corcuption may he due to several
effects inherent in the optical system, such as diffraction and aberratioz,
as well as background and detector noise. In fact, the effecis of
diffraction alone can severely limit system resolution and effectively
destroy, insofar as the observer is concerned, the original object detail,
These effacts are 30 pronounced that in the past, as Toraldo di Francia
(1952) points out, the classical Rayleigh resolution limit has been
accopted as a theoretical limit, However, in 1955 Toraldo suggested that
a priori :aformation about the object could be used to alleviate the
apparent theoretical limits imposed by diffraction.

In 1964 J. L, Harris showed, by using some well-known results,
that in the absonce of noise a priori knowledge that the object is of finite
extent is sufficient to enable the exact restoration of a diffracted optical
object, This work theoretically establishes that object restoration is

limited only by system noise.



V/1iZ this background we state that the problem treated in this paper
is that of restoring an optical object which has been diffracted and
corrupted by background and detector noise. Particular emphasis is

placed on the trace~off between restoration cCetail and the limiting noisee,

Ap_gro;chal to -he Problem

Although a unique theoretical solution has been shown to exist, the
application of a working restoration procedure whick performs well for
a variaty of objects and optical configurations is quite another matter,
3acically, three approaches have been considered in solving this
problem.

One approach has been to utilize the Fourier transform relationships
that exist between the object and imsage., Harris (196¢), Osterberg (1966)
and V/olter (1961) have considered this approach. However, this
technique appears o be difficult to analyze when applied to the noisy
observed quantities, and as yet no results appear to be avaiizble which
use Fourier techniques in such an eavirorment.

A second approach, used by Barnes (1965a), is one of analytically
sulving for the object by using the eigenfunctions of an integral operator
involving an analytical point spread function. The drawbacks of this
approach, from a practical point of view, are: (1) the extreme difficulty,

at presint, in - .taining eigenfunctions for a general point spread function

S o
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(one that is measured), and (2) the fact that, to date, system noise has
not been included in the analytical restoratinn process.

The third approach which is developed in this paper is that of using
numetric . methods to perform the reatoration. We reiterate the
practical advantages of this procedure over those above, First, in an
actual real-world situation only discrete quantities are available to
operate on and effect a solution; i, e., the point spread function and
image are usually not analytically inown and so must be discretely
measured and thei operated on to perform the restoration, Secon},
the observed quantities are not deterministic but must be tre» ~d as
random variables. This randomness may be due to additive background
fluctuations, film granularity, photomultiplier multiplicative roise or
soms other detector noise. These effects can be taken intc account by
using numerical technique: and appealing to the statistically optimum

minimum mean square error (MSE) estimation procedure,

Plan of the Paper

The first section presents a review of the development of the
image=-object relationships and presents the integral equation that is to
be solved to effect the restoration, Emphasis is placed on reviewing
the assumptions involved in developing the imaging equation and in

discussing the concept of diffraction and how it is to be varied in this

AT AT S A S TSR | e i ST

125

s

i

A A A

E
H
Z

=
£
=
=
=
E
=
=
E 3
E
ES
E
E
=
E =3
=
=
=

=

H




T DSOS g R o

i et 1 e

.

4
paper, Emphasis is also placed on the transfer of the continuous version
of the imaging equation to its discrete representation so that numerical
methods can be used in its solution,

As a preview to the numerical work that will follow later, the second
section after the introduction reviews previous numerical work in the
solution of the basic irtegral equation developed in the first sec:ion.

Also presented in this section is a dynamic programming solution,

develuped by the author, which utilizes an "area'' constraint in the
solution,

The third section treais two analytical approaches which assess the
difficulty in regaining object information which has been obscured due to
diffraction and noise. Particular emphasis is placad on the trade=off
between SNR and diffraction in obtaining this information.

The fourth section discusses the noise models to be used and
presents the development of the minimum MSE object estimate. This
estimate and the coriputational features discussed in the last two soctions
constitute the basic restoration procedurs as presented in this paper.

Results of performing actual simulated restorations and of the study
of errors involved in using the MSE estimate are presented in the last
two sections, Flere again, as in the section on analytical resulits,
particular 'emphuh has been placed on tha e..ects of noise and diffraction

in restoring object detail, In addition, emphasis has been placed on




presenting actual sirnulations for various noiLe levels 20 that one may

visually judge the restoration improvement. These simulations augment
the important but somewhat abstract results obtained in the analytical

section and serve to give one a more complete picture of the restoration

procedure,

1 O
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THE IMAGING EQUATION

n this section we derive and discuss the relationship between the
radiation from an incoherent source intensity distribution and the corres-
ponding image intensity distribution, Near the end of the section the
imaging equation in both continuous and discrete form is stated. In
order to clarify what is meant by diffraction as it applies to the restoration
problem, the concept of diff:action and its relationship to the imaging
equation will be discussed., With this background the reader should

be able to more clearly assess what is meant by object restoration in

the presence of diffraction,
The Optical Co tion

The opiical condiguration to be used in the derivation is shown in
Figure 1. However, it should be mentioned that the imaging equation
developed here with the subsidiary definitions necessary to utilize this
equation can be derived from several optical configurations., Two such
derivations ars mentioned below.

Helstrom (1964) derives this equation with suitable geometric
assumptions which make it possible for a lens or absorber to replace

the aperture. His approach is quite natural if one wants to develop the
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practical aspect of an instrument which observes objects at great
distances from the aperture,

Cutrona and others (1960) use a configuration composed of appropri=-
ately spaced lenses which is cften used in the laboratory. Using this
system, the only assumptions necessary to derive the imaging equation
are that the lenses together serve to image the object plane onto the

image plane and that the lenses are aberration free.

The Scalar Theory

To begin with, the disturbance in the object plane is taken as an
electromagnetic field at optical frequencies, The complete derivation
of the imaging equations by finding appropriate solutions of Maxwell's
equations has been accomplished only in a few idealized situations
(Stone, 1963). However, an approximate theory has been developed
which allows one to solve the imaging relations for a variety of aperture
shapes. The approximate theory treats the electromagnetic disturbance
as a scalar field and neglects effects due to polarisation. Fortunately,
the imaging equations developed from this theory predict the associated
distributions to high accuracy when certain restrictive although not
impractical assumptions are made.

The wave equation, which the amplitude of the wave in the scalar

theory must obey, is
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2,, L 2u
vu+—iz-o (1)
c ot

where u is the scalar amplitude of the wave and ¢ is the free space
velocity of light. The monochromatic (wavelength ) solution of this

equation in spherical coordinates may be written
u(R, t) = % cos [k(R-ct) + 0] (2)

where a is the constant fixing the amplitude, R is the spherical radial
variable, k = 2u/3, and; is a phase angle, This solution represents
the wave propagated from a point in the object plane,

It is desired to conrider many such points located at (a,f) in the
object plane, and so we write for the object amplitude distribution

w(R,a,8,t) = ¢ Ry [Alg, 8, t)e' ") 3

where A{x,0,t) is the complex amplitude, R ¢t means ''real part of, '

and c is a constant which takes the inverse distance relationship irto

account,
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Here we make the assumption as discussed by Helstrom ({1964) that
the observation time is to be small compared with the reciprocal band;
width of the radiation and that no information regarding the instantaneous
time dependence will be used. Dropping the time dependence and for our

purposes the unimportant constant ¢, we have
u(R,a,0) = Afa,p )eu‘R. (4)

Use of Huygen's Principle and the Geometric Assumptions

The Fovreier transform relations which will be developed are
essentially those established by Huygen, Fresnel, and Kirchoff. For
a more detailed treatment, the reader is referred to Stone (1963), O'Neill
(1963), Born and “7olf (1959), and Beran and Parrent (1964).

Consider : wave due to a point source in the object plane which
propagates toward the aperture, In essence, Huygei:'c principle states
that once this wave has propagated to points which are just through the
aperture opening, then these points themselves may be regarded as
sources of secondary wavelets that again propagate with the usual solution
(2) for a point source, The disturbances due to all of these '"'secondary"
sources which reach the image plane then may be appropriately summed
to obtain the image plane distribution, Finally, to obtain the image

distribution due to several point sources or a continuum of point sources
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in the object plane we merely sum or integrate over the object plane

coordinates, §
Following the above procedure we seek to find the amplitude at an

arbitrary point {y,o) just to the right of the aperture opening. At a point

to the left of the aperture

uR,,a,8) = Ale,3)e "1, (5)

e L e

Dealing only with the exponential,

ile ileo i.k(Rl -Rl o)
L) s e e

. (6)

i I e

Referring to Figure 1 the length R from Ol to O can be written in two

vays:

Ra nlz- <) - cB8)} = nm" -a?p?, W)
also

2 2 2. 2
R,“ =R, = (R“R )R, +R g} =¥" +c"-2(a +aB). (8)
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We now disregard the saquared term in the exponential on the grounds that
the Fraunhofer farfield conditions hoid and that the open portior of the
aperture plane is small, However, we still make the assumption that
the dimensions of the aperture are many wavelengths, an assumption
which is made in order that the scalar wave theory will agree with
experimental results (Stone, 1963)s We also assure that the source is

sufficiently far removed from the apertr:re so that R

-l-R1 = 2R in the

1 0
denominator, Thus, the electric field just to the left of the aperture is

kR il ‘!a '"'EZ
Ale,8)e 10, S (10)

In order to simplify the above expression (10) the following spatial

frequency components are defined:

f w L= (1;

i i

s ST T s AR Rl
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Expression (10) becomes
A 10, HTHE), (12)
We now define a transfer fundtion GC!,Y, £c) and obtain
Vo, fp) = GHE, £) AlB) em” e.m“'a P (13)

tor the ciectric field at a point (v, o) or (ﬁv, £ ) just to the right cf the
aperture; The magnitude G(f.v' £¢) cannot be greater than unity, for
the aperture cannot amplify the incoming field (Helstrom, 1964). We
also define the transfer function so that it is gero for points outside the
open portion of the aperture plane,

At this point we apply Huygen's principle and treat each point on
the right side of the aperture as a ''secondary' source, Following the
same reasoning used in arriving at the disturbance at the left of the
aperture plane due to a point source in the object plane, the electric

field in the image is

ikR, . f2w{f € + £ n) (14)
va.p (‘y'fc) . 20 e aY 4

where again we have assumed the Fraunhofer conditions,

SO S SR s R
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To obtain the total electric field due to a point source in the object

plans we must integrate over all of the ""secondary" point sources in the

| _ aperture plane. Thus, the electric field in the image plane due to a point
{ source in the object plane is H

| iR, » 1200 ¢ + £ n) 5 |
Vaplurdne 0 [[v, st e e e, () I
Substituting for \ ﬁ(f'y"ﬂ)
ik(R, . + R, )
Vo ptama=e 10 20 (16)
: 12e(€ (E-2) % £ (n-B))

.f[A(a,ﬁ)G(gv,fo_) e at ot .
e

Thus far we have dealt entirely with the aniplitude ~* the electro-
magnetic field, However, throughout the derivation that follows it will
be u.ssumed that we are dealing with incoherent light and that the measured
quantities are intensities, which add linearly. Coherent light could also
be arsumed throughout and the form of the imaging equation would be the
same as that derived for the incoherent case, In this respect the aumerical
techniques used could be applied to either coherent or incoherent
illumination, but the simulated results in the last sectior. apply only to

the incoherent case.
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The intensity (watis) at (§, n) due to a point source at (a,p) is

|
BBk =Y, g o) Yy gleand s [y, p&m )

where the star as used here denotes complax conjugate, Performing
this multiplication

blayfigin) = ] ﬁ" [ lacaer [ Glg,0% ) Glfy, £ )
“

42w [a 6y £y )4 B (£ -]

1 3
+2w [E(fy ~Ly) + nif_-£ )]
e ot 2 atydtyer af . (18)

To obtain the total iutensity due to a continuum of point sources

in the object plane we irtegrate over the object plane, 1hus

b(&,n) = f f b(e,8, £, n) dadd, (19)

o

and using (18)

¢ t
~ 127 [ (b =y s + lE_~£_)]

b{€, n) '\[f G(ty, fo_) G*(s'v. f;) e v c o
0

(20)

dred) ]df:ydﬁydfcdfc.

AL

[ fT |at, 5/ ,;iz" ety =£) 4046,

)

Hriflpuad

!
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The integral in brackets is defined as the s atial frequency spectrum of
the object intensity distribution, The quantity |A(r,5)|° is defined as

the object intensity distribution and wili te denoted x{~,3). The integral
in brackets is alsc e two-.di.menaiona.l Fourier transfoim of x(x,3)s Vie

'
denote it as A(fy~fy, £ o,-i:_). In general, capitai letters will denote the

- patial frequency transform of the analogous function in lower case letters.

To facilitate further sizaplification let ty = fy-fy snd t = f -f .,
Thus £y = fyety, dfy = =dty, andf, = £ -t , &f = -dt, and
o f2n[Ety + nt
b = [[ Xttt ) e >

(21)
r *
. gG(W, fo_) G (ty=ty, fo‘ -to‘) dﬂydfo‘] dtvdto_.

The integral in brackets above is defined as the Fourier transform
of the point spread function, It is to be denoted as H(tv,to_). It will be
assumed throughout for the configuration considered that this same poiat
spread function applies for all point sources in the object plane. This is
the spatial invariarce assumption one uses in an "idealized" optical
configuration (O'Neill, 1963). V/ith this definition

12w [Ety + nt
b3, n) = ,T X(Wa tc)H(tya to.)Q 0] dt'rdt' (22)

©0
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Taking the Fourier transform of both side of the above equation,

Bity,£ ) = Higy, £ ) Xity, € )o (23)

By the convolution theoxrem

bg,n) = ff h(E~a, n-B) x(e,B) dxdp, (24)

%

The one~dimensional vexrsion of (24) is

b(§) =]h(§-¢) x(r)da. (25)

Since it is assumed that the object is of finite spatial extent, Equations

(24) and (25) may be rewritien as

ben) = [[hE<, 0-) xie, 81008, (26)
R
2
a
blg) = [ hig=) xte)z, (27)
4

where Rz denotes the region in two-dimensional object space where

x(a,p ) is nonzexo,

iEatb I
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It iz our objective to solve the integral Equations (26) and (27)
for the object when the image and point sp~ead function are specified,
These equations represent the diffraction of an object by an optical
system and are known as the one and two dimensional versions of the
imaging equation, Of course, it is obvious to this point that no noise
is represented in Equations (26) and (27). Noise effects are treated in

a later section.,

The Concept of Diffruction

Vhen the point spread function is much larger in spatial extent
than the object, then the image is nearly equal to the point spread
function. This is a case of large diffraction, and the image bearc little
resemblance to the original object, Alternatively, when the point spread
function is small spatially in comparison with the object the image is
nearly e, aal to the object and the diffractinn effects are almost negligible.

In order to provide a measure of diffraction we define

R e Point spread extent
Object extent

(28)

where by point spread extent we refer to the "Airy disk' of the point
spread function and by object extent we refer to a measure of the outside
size of the object (where the object is nonzero); i, e., the size of a two=-

point scurce object is taken as the separation between the points,

SRS Y
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The ratio R may be varied in two ways, We can either fix tLe
aperture and vary the object or fix the object and vary the aperture.
Both methods of varying R produce the same qualitative results, In
this paper we have considered, so far as the simulated results are
concerned, a fixe3 optical system which views v irious objects, This is
generally the case treated in practice since the cause of a "diffraction
limited system® is usually due to the fact that either the aperture was
fixed when the measurements were made or, on realiring that diffraction
was severe, the aperture was opened as far as possible but diffraction

was still apparent,

Since we are presenting results for a fixed optical system that views
various objects, it was convenient to fix the aperture in reference with
the classical Rayleigh criterion for resolving two point sources. The

Rayleigh criterion resolution distance was set at unity, and thus :

2.0

S object size (29

and R = 2, 0 corresponds to the spacing of two point sources which
Rayleigh proposed were resolved, However, as we shall demonstrate,

two sources can be resolved even in the presence of noise when R = 10,0,

il

Now that the concept of diffraction has been reviewed and put in

context with regard to the restoration problem, we consider next the

it
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presontation of *he numerical technique to be used ‘n solving the imaging

equation,

The Numerical Technique

We desire to solve the imaging equation by a numerical technique.
Thus, we are led to consider approximate discrete representations of the
various functions involved., The one~dimensional version (27) for a single

point § 4 Ay be written as

m
bi = if] (hijwj) xj + « (30)

where bi = b(&i), hij = h(ei, aj), xj = x(aj). wj is the quadrature weight,
and ¢ i is the quadrature error involved in transferring from continuous
to discrete quantities,

The quadrature error ¢ is very important in the restoration pxocess,

i
particularly if it is assumed that the object, point spread function and
image are all continuous functions, The quadrature error can be
regarded as depending primarily upon the number of points (M) chosen
and the type of quadrature weight (wi) uced, Evidence indicating the
proper choice of these quantities for the one~dimensional case is

presented in = later section, Thus, at present, we neglect the

quadrature errcr and defer this discussion tc a later section.
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Generalizing (30) to N image points ﬁl. 62. .o .ﬁN. we have
N equations of the form (30) which may be written in matrix form as
b = Ax (31)

where the slementu ‘U in the A matrix are defined as

a‘j.hﬁwj isl.l..N

j. l,ocoM

and b and x are, respectively, Nxl and Mxl dimensional column vectors,
The two~dimensional version (26) may also be represented in the form
of (31) by a suitahle definition of the points in two dimensional space.
This definition is illustrated in the Appendix,

Equation (3£) is the discrete numerical representation of Equations
(26) and (27) used throughout the paper. Observation of (31) in light of
the objective (that of solving for x given A and b), the obvious solution
for the case when M = N and A is nonsingular is

x=a"lp (32)

T AR the inverse matrix for A.
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However, such a simple solution is essentially of no value when
applied to the practicas optical problem. The two outstanding difficulties
experienced by the author and cthers (Phillips, 1962; Bellman, 1965)

are stated below, First, in arriving at (32) it is assumec that no noise

is present in the system. The use of this assumption is very important

since sxcessive accuracy may have to be used in order to obtain the

correct solution, Se.)nd, as the diffraction becomes appreciable, thc

A matrix approaches a singular matrix, and from a computational point
of view the successful inversion of the A matrix is nearly impossible,

Both of these difficulties can be alleviated by taking the nois. and the

a priori information in* .ccount, This Zact is demonstrated in the

simulated restorations presented in a later section.

Phillips (1962) has also developed a technique based on control
theory which overcomes the problems mentioned above. Because of the
similarity of his solution, as developed further by Twomey (1963), 2nd
the minimum mean square error (MSE) solution, in the next section a
review of their approach to the problem is presented. Bellman (1965)
has further extended the computational procedure developed by both

Phillips and Twomey and has applied dynamic programming to the solution

of the problemn, Hence, we shall also considex the dynamic programming

approach and attempt to evaluate its merits and limitations as it applies

to the restoration problem.
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NUMERICAL SOLUTIONS AND METHODS

IN THE ABSENCE OF NOISE

Review of the Control Theory Approach

Because the final form of the solutions developed by Phillips (1962)
and Twomey (1963) is very similar mathomatically and conceptually to
the MSE solution derived later, a rather extensive review of these papers
is presented in this section,

Recall the one-dimeasional version of the imaging equation (27).
Phillips (1962) mentions that this integral equation of the first kind can
be unstable in that infinitesimal changes in b(f) can cause large changes
in x(a) and that the success in solving this cquation by any method depends
largely on the accuracy of b(f) and the shape of the kernel h(f~:),

Since the solution will depend on the accuracy of b(§), Phillips

suggests that (27) be altered to rvad

B(E) + e(€) = [ h(g = )x(a) da (33)

where e¢(f) is an unknown arbitrary bounded function, The solution to
this equation is not unique, but now we seek to find the best solution

from a family of solutions., The ''best solution' is referred to in the

il
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sense that further constraints are placed on the solution which enabdle
one to solve the problem,
Phim;;a introduced a smoothness constraint, which is that the
quantity
P 2
[ rewenas (34)
“m»
be small, where x"(£) denotes the second derivative of x(§). Numerically

(34) may be approximated by

" 2 35
z(x‘_l -in + xi“) . ( )
i=l

Phillips then considers the function e(f) to be bounded in the following

way:
a
f el(g) a¢ <E (36)
-2
or squivalently
el <E. (37)
i=1

(N
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Now we can prog. e the following minimization:
min %d( 2x, + )2 (38)
X 1" x ;
{xi) im] * 171 Tidd
subject to
NM 2
Z(E aijx -bi) -E =0, (39)
imsl j=1 j

Following the general minimization procedure using .agrange multipliers

the problem posed in (38) and (39) is equivalent to seeking the { xi)

which minimize
M . z -‘l "N M - 2 5
R(x)= Z (xi_l-in + xi-l-l’ + N TE aﬁxj-bi) -E (40)
iml tin] jo? i

where 7\.1 is the Lagrangian multiplier (Courant and Hilbert, 1953;
Hildebrand, 1952).

If we continued on with the Lagrangian method we would find partial
derivatives of R(x) with respect to the x and 7\.1. From these equations
one then solves for the x and )‘-l, In this case, however, we cannot
solve exglicitly for 7‘-1 unless the bound E is specified, Thus, to make

the problem more mathematically tractable we consider the quaatity

)"1 to be known and E to be unknown. This is often done in practice,

=
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and one can reason that the parameter 7\’1 is to be varied until some
specified bound is attained (Bellman, 1962).

When 7\'1 is nown we can equivalently choose x, to minimize
N M 2 M 2
Rix) = Z (Ba, x.<b)" + A T {x,_ ~2x, + %) (41)
jal ju1di J 1 i=1 174

Now the second term can be regarded as the constraint, while we scek
to minimige the squared srror.

Note that if ) is allowed to be negative the'' R(x) can be made zero
regardless of {xi} » Thus only non-negative values of ; are to be
considered.

To find {xi} we differentiate R(x) with respect to X, and equate

the result to zero. Thus,

x N M
=Z 3 (T a . x b) (42)
a,‘k i=l j:l LR

e pm Xy ) HOx i) 2 0

whars X, = xM+l =0, ke 3,4,...M-2. In mairix form this equation

can be written

AAx - A'b + \Hx =0 (43)
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where Ha=

s ordun
e mbhoh
S S G
i obheo
‘e broo
s * =~noo

The prime is used to indicate a2 matrix nr vector transpose. Thus,

the minimizing vector x is
x = (A'A +2\H)™' Atb, (44)

This is the result obtained by Twomey (1963) and is a slightly modified
form of th; original expression developed by Phillips (1962).

From (44) we see that if )\ is zero the solution reverts back to the
overdetermined pseudoinverse solution (M<N) or the inverse solution
(M=N). Values of >0 weight the constraint more heavily and a5 chosen
in accordance with the amount of "smoothing' necessary to control th2
unstability of the system,

Once the solution vector x is found the individual "errors" (ei) may

be cetermined from
e=z=Ax -b, (45)

These values may be used as a criterion t- thoose ) (Phillips, 1962).

For ) = 0, t".ec e, are zero.
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The choice of a suitable value for ) mav laad one to be rather
skeptical about the use of such a parameter., Experience has shown,
however, that in applying this tachnique to the optics problem the
ill-conrditioning of the original syste:a can lead to solutions which conflict
with the a priori knowledgs that the incoherent object intentity distribution
cannot be aegaiive or exhibit large positive or large positive and negative
oscilistions, Based on this rather limited prior information, a practical
choice of ) can be made,

In practice we can, by obtain’ag a solution for several values of 3,
determine a minimum value Mnin *° that the solutions do not conflict
radically with this a priori knowledge. For 2 range of values above this
minimum, the solutions do not change appreciably, and thus are all
"acceptable solutions," With this knowledge and the ase of further

computational schemes we can from a practical point of view circumvent

the arbitrariness in the choice of ).

Other Constraints

Twomey (1963) and Bellman, et al. (1964, 1965) utilize other
constraints wixich are applicable to their particalar problems., Tworaey
(1963) suggested a constraint which minimizes the sum of squares of
the differences between the actual solution vector x and an a priori vector

ps In this case we seek to minimize
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AX) = a, X, =b + .
The vector solution (obta.ined in the same stra.ightforward way as b-afore)

is
x = (A'A + 20" (Atb + 2p) (47)

where I is an MxM identity matrix. Twomey states that a general form

of the solution when many different constraints are considered is
x = (A'A HH)"! (A + ) (48)

where H is a matrix and p is a vector, and they are to be specified
by the constraint used.

Here we call attention to the fact that (47) and (48) are very similar
mathematically to the MSE solutions (149) and (155) which are derived
later. Conceptually, the methods used in deriving these equations are
also very similar in that the basic motisation in each case was to utilize
a priori information in producing a better solution. Further analogies
between the MSE and control theory approach are deferred to the Object

Estimation Section,
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Sequential Approximations

The method of sequential approximations or iteration shown here was
first mentioned by Bellman, et al,, (1965). It was found to be very
useful in the restoration problem and was used extensively in obtaining
the simulated restorations presented later. This method was applied to
both the MSE solution (157) and the control theory solution (47). The
method consists simply of continuously replacing the a priori mean or

vector by an updated version as shown below:
x = (AA + )\I)m1 At ¥+ (A'A + 7‘1)"'l X _1° (49)
This is a sequence in which x approaches the vector
x=A b (50)

for A nonsingular, The convergence of this sequence is seen as follows,

For convenience we define the matrix

B = (A'A + 71" (51)
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and the vector

d = A'b, (52)

Now for \>0 and A n- asingular the eigenvalues of \B are all less than

unity (Bellman, et al., 1965), To show that the sequence (49) converges,

we note that it is a Cauchy sequence

xn T Xl KB(xnnl - xn-Z)

= ‘*B’Z‘xn-z - xp.3) (53)

X =x = ()‘B)n[ Bd + xo(I +2B)],

whence, as n approaches infinity, X =% approaches zeroc and x and

x 1 approach x. Thus
x = (A'A + m" A'b +\(A'A + m": (54)
and

AR (55)

K
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Again we stress that unless we can successfully invert A (from a
computational point of view) and possess essentially deterministic know-
ledge of the vector h, then the vector x will not correspond to the cbject
vector x, Procedures have been designed into the solutions which alleviate
the lack of this knowledge, However, this does not minimize the importance
of the iteration technique, since its use allows one to effectively vary the
a priori information in a much easier way than by inverting a matrix for

each new valae of ).

Dynamic Programming Solutions

Review of dynamic programming

To present some continuity with regard to dynamic programming
procedures, the following brief review is presented. The reader is
referred to Bellman (1957, 1960, 1962) for further details, A classically
simple yet exhaustive example involving the principles of dynamis
programming would serve this purpose, but such an example is hard to
fird for the procedure described.

Dynamic programming is a term used to describe the mathematical
theory of performing a sequence of decisions, or more formally, the
theory of multistage decisicn processer In this paper it isused as a
mathematical tool to sequentially compute the vector components of the

object vector x.
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The . ~ajor advantage of dynamic programming over the solutions
just considered is that no matrix inverses are needed. Thus, this
procedure can alleviate matrix inversion errors for large or nearly
singular matrices. However, the procedure also has limitations for the
problem being considered. One such limitation is due to the use of time
as an artificial index of available informat.on, a facet to be discussed latex
in this section,

Dynamic programming solutions inherently depend upon the optimality
principle, which is; An optimal policy has tte property that whatever the
initial state and initial decision are the remaining decisions must
constitute an optimal policy with regard to the state resulting from the
first decision, The general proof of this principle is proved by a
combinaticn of induction and contradiction, A specific proof is found in
Bellman (1962).

For a more detailed review we consid’ . ...c wascrete deterministic
process; deterministic in the sense that the result of a decision is vniquely
determined by the decision and discrete in the sense that the process
consists of a finite numbe. of stages.

Bellman (1957) cefines a state vector p = (pl. coey pm) which is a
member of a set D and a sequence of tran.sformations T= {Tq} o The
transformations have the property that p ¢ D implies Tq(p) ¢ D also.

That is, the transformations have the property of transforming the state

vector at any stage of the process into its original set.
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A policy is any choice of the set of variables which yields an
allowable sequence of decisions. An optimal policy is the choice of q
Qacecy qN, which in our case minimizes a preassigned function of the
final state Py Ccrresponding to each q we have Tqi' and thus we may
equivalently regard a policy as a selection of transformations. The
preassigned function R(pN) of the final state is denoted as the criterion
function,

Now we define

f,(p) = min R oy (56)

where fN(p) is the N stage return obtained starting from an initial state
p and using an optimal policy.

We can use the optimality principle to obtain a recurrence relation~
ship for the functions uf the set fN(p) + Suppose a transformation Tq
is chosen as a result of {ne first decision, The new state vector is Tq(p).
The rainimum value of the criterion function as a result of the next N-1
stages is fN-l (Tq(p)) from (56) above, Using the optimality principle, if
it is desired to minimize the total N-stage criterion function, q must be

chosen so that

fp) = min £, (T (p)) (57)
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for N > 2, with
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fl (p) = min Tq(p). (58)

Equations (57) and (58) are the crucial relationships used in discrete
deterministic dynamic programming. Once these relationships are
established for the particular problem at hand, the solution is well on its

way to completion,

Stochastic dynamic pregramming

A similar formulation is available for a discrete stochastic process
in which the basic difference is that a decision results in a distribution
of transformations, Several additive noise forms were considered under
this formulation, but for the forms considered only first moments of the
additive noise entered directly into the solution, while second moments
and first moments entered into the final error function, Since we can :
assume without loss of generality that the noise mean is zero, these

solutions, except for the error term, were the same as the deterministic

solutions, f
Deterministic solution with area constraint %i
Bellman, et al, (1964, 1965) has obtained dynamic programming %;

solutions for two constraints, one which involves the use of an a priori

R

- a3
v TR R T




36

vector p as in (47) and another wh’ch utilizes a smoothness constraint,

Here we obtain a solution which uses an area constraint and is suaited to

the a priori information available in the problem.
We first show that the area under the object is attainable from the
image and point spread function. The area under the object distribution

is the product of the areas under the image and point spread functions,

This is easily demonstrable, Consider the one-dimensional version of the

imaging Equation (25) which is
b(£) = h(E)*x(£) (59)

where the star as used here denotes convolution, The analogous :

exprer sion in the spatial frequency domain is
B(f) = H{f)X(f) : (60)

where

Expression (60) holds for all f, thus when £ = 0, we have

f b(E)dE = f x(€)dg f h(£)ag (61)
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which is the desired product of areas, The numerical approximation for

these integrals yields

M N /N
c=Z xw, s Z bs/Z hv (62)
i=1 ii izl 31 jal i

where W, 8 and v, are quadrature weights,

i i

Since c is attainable from (62) we can use (62) as the constraint and

minimize

M 2 N M 2
RM(x) a\( 2 wixi-c) + = (?3 ai.x.-bi) o
i=1 i=l j=1

(63)

Before proceeding with the dynamic programmming solution, we shall
consider the vector solution. Differentiating RM(x) with respect to Xy

and equating the result to zero,

oR, ((x) M N (M ”
- = N(Z wxc)w, +Z a, (Za,x.-b.)=u, (64)
9%y jap 13k kg

In matrix form

A WWIX = \cW + A'Ax = Atb = 0 (65)

LT
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where w! = (wl ye &, wy) is the vector of quadrature weights. Solving

for the vector x,
x = (A1A + y7wi) ™! (ATD + Aew). (66)

If we defiae the unit vector e! = (1,..,1), then the vector form of

the area constraint solution is
x = (A'A + )\ee')“1 'A'b + )ce) (67)
where w, @ 1, i=1,.00,M,

Evaluating RM(x) by substitution of (67) into (63) we obtain the

follvwing quadratic form for the error:

e=bl{I+A[AA +)ee! ]-l At} b
+ 2b{ NA[A'A +pee' ") &) (68)

+H\4+ Aze'[A'A + eet! ]-l el cz.

Tris may be written in the form,




39

-

c+r {c“ (69)

Ty '
e=b.4Mb+2bpM N

which is referred to in the dynamic programming solution.
To begin the derivation of “he dynamic programming solution, we

specify that 1SM<N. For M =1 there rerults the simple problem of

minimiging

R, (x) = Ax; w, =c) +i§l(anxl-bi) 5 (70)

The minimizing value of x, is

Acw. + bta |
1 {1, (1)

x = 5
w, +at, a
W TR
J = {a Y ! = XX
where a (1) ( 11° 221000 'aNl) and in general a M) (alM’ ’aNM)
and represents the Mth column of the A matrix, R1 (x) evaluated at the

minimizing value of x, may be written in the form

. 2
n)x‘xr Rl(x) = b'le-l- Zb'plc trec . (72)

where
-3y

2
)‘wl + a'(l)a(l)

Ql=

R
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AW, a

(1)
;\wl + a'(”au)

o
—
|
(48]
-

2 2
AN W)
T = °

2
)‘wl + a.'(l.,a.(l)

The recurrence relationship

fM(b, c) = r;xgi]&[ fM-l(b.a(M)xM' c-waM)] (73)

is stated for M> 2, with

fl(b, c)= n}‘iln Rl(x). (74)
This recurrence relation is derived in the Appendix using the optimality
principle.

Referring to the definitions previously discussed, the parameters b
and c represent the state variables, the functions { fi(b’ c)} correspond
to tb » criterion functions, and the optimal policy corresponds to the
choice of x. or transformations {b-a(i)xi, c-wixi} .

The general form of the error for the vector solution (69) is similar

to fl (b, c) shown in (74) and (72), It is a simple ma tter to prove

56, s s b M STH vt s
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inductively that the general form of fM(b, c) is

tM(b, c)= b'QMb + Zb'pMc +r cz. (75)

M

To solve for the general scalar value x

M the recurrence relation

(73) is used with (75)

cz = min{ (b-a

1 '
b QMb +2b Py S +r i

]
M oM Cm-1® 2 )

+ Z(b - a(M) ) pN l(c WM N') (76)

rM_'l(c-w r )}.

Expanding the expression on the right,

2 2
1 1 i
b QMb +2b PyCtryc = x;?;:(b'QM-lb +2blpy, €t T C
4+ x° [r Wl + Zwy At P at, Q  .a,. .} (77}
VARSI YOS Mb Y M (M) M- 1 o) M-12 (M) 0

- ]
2l oW ar t o aPrar t WPy ] e

For convenience the first expression on the right in brackets is defined
as G and the second expression in brackets is defined as D, Differentiatin~

the expression on the right with respect to XM and equating the result

5 -
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to zero,

WFMa1 % gPMma1 T VMR Pr-1 2 vy R a1 "

x, & 2
M~ D b wz+2wa a
M-1"M "Pma1 2 oy PMa12 )

All of the quantities in this expression are known except le -1° Py-1’

Mel? but recurrence relations for these quantitiea can be estnblicrhed

by evaluating £, (b,c). Substituting (78) into (77),

and r

' ' '
bQMb+prMc+rNc abQ b+2ble L

2
g (79)

Expanding (.‘:2 and equating quadratic coefficients the following recurrence

relations are evident:

MPM-1 * 2y ¥PM-1 * !

Q.=0
M= “Ma1” 2

rM-l wM+?.prM+kM

"MPra1 ) M1 M P!

Px¢ =P (80)
M M-1" w2 + 2w +

MMt 2Pt g

2

o I Y B VLV
M M-l wli2w btk

™M-1"M MM M

Sestnh Sl e
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where for computational purposes we have defined auxiliary quantities

«a =Q

(M) T “M-1 (M)

PM =P Mol 3(Mmy

and

lﬁ\d = a'(M) QM-I a(M).

Recalling ine expressions for Ql’ P and T in (72) we see that if
Q0 =L p,= 0, and T=N then the relations just developed (80) hold
for 1<M<N.

If the stability control parameter ) = 0, then (78) reduces to

1V e O
' (M)¥M-12 (M)

X (81)

M
Since the scalars zi=0, i=1,...,M, and the vectors pi=0, i=1,...,

M, then for ) = 0 the recurrence relations (80) reduce to

Q.,=Q

v (82)

M-l ~ Ky,

for 1SM<N, with Q =L

The general relations (78) and (80) constitute the dynamic programmir<

WA HH

solution for the restoration problem using the area constraint as

praen
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previously described, These relations along wita the relations developed
by Bellman, et al, (1965) for the prior vector constraint were used in
actually aimulating thes restoration process. The resulte of these
simulations appear in a later section,

The major advantage of dynamic programming over the matrix inverse

solutions is that no matrix inverses are needed, As a further evaluation,

an apparent limitation ia discussed below,

Pseudo-time and dynamic programming

Time as used in dynamic programming is usually used as an index
to indicate the availability of information, In applying dynamic
programming to the restoration problem, time in this sense is an
artificial index since in most cases all of the information needed to effect
a solution is available at the same time. An elaboration of these state~
ments follows,

In business problems, as well as in many other problems because of
the sequence of time, only limited information may be available to ozerate
upon at a certain stage of the problem, and in these cases one can do no
better than act on the available information. For these cases the dynamic
programming solution is optimum in the sense of using all of the available
information. However, the stepwise minimization az noted in (70) iz
accomplished as if only the first column of the A matrix is available,

when actually the entire A matrix was available, There is some cost for

R R G it e
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this neglect, If this cost does not compensate for the computational error

involved in matrix inversion, then, neglecting other factors, one would
not use the dynamic programming approach. This tradeoff has not been
investigated in its entirety, but the evidence from the results available

indicates that the dynamic programming solutions are not as well suited

\0 the optics problem as the matrix inverse solutions,

Combination of dynamic programming and matrix inversion

As a continuation of the above discussicn, one logically inay ask if
there is a procedure one can use to combine the properties of dynamic

programming (which enable one to treat large dimensicnality) and yet uue

more A matrix information per object estimate. The author has developad

a generalization of the dynamic programming procedure which allows one
to restore the object vector as groups of subvectors, The solution for

each subvector involves the inverse of an increasingly greater submairix

of the original A matrix and thus utilizes more available information than

the scalar by scalar soluticn previously considered. It appears that this
generalization may be applied to all of the dynamic programming
constraints used thus far,

Because of the computer programming complexity involved and the
fact that the matrix inverse procedures were computationally sound for
the A matrix dimensionality considered, this generalization was not

investigated further, However, future efforts should not overlook this

BT R ot i
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generalization, particularly in regard to the greater A matrix

dimensionality inherent in two«dimensional object restoration,
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ANALYTIC RESULTS WITH NOISE FOR SPECIFIC CASES

In addition to the theoretical implications that this section conveys,
this section is presented in order to emphasize the trade-off between
diffraction and noise in regaining object information which has been
corrupted hy these effects, Two rather separate looks at this trade-off
have been investigated, In each case different amounts of a priori
information about the object are assumed.

The first case involves the problem of discriminating between two
different objects, It is known a priori that there is a choice between one
of two objects and further that the objects are specified a priori as a
one=point source and as a two-point source object, In the second case
it is assumed that the object consists of two point sources, but because
of diffraction effects the separation between the two point sources is not
known, For the second case the relationship between the error variance
of an estimate of the separation and diffraction is shown, It is important
that the a priori information used in each case is emphasized so that
we can belter evaluate, qualitutively at least, the cost involved in
regaining various amounts of information from the observed image.

A second point to be mentioned is that th2 results presented in this

section are largely theoretical, while those that follow treat the morz
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practical aspects involved in the general restoration problem when there

is virtually no a priori object information,

Detection Error vs, Diffraction

The problem of optical discrimination or detection has been considered
by several authors (Helstrom, 1964; Harria, 1964b; Rushforth and Harris,
1966; . :n, 1966), In this treatment several assumptions are made
which enable the analytical solution to the detection problem to be obtained,
This is done to present a rather complete example of diffraction and

noise effects in the detection problem.

The noise model and detection scheme

To begin the problem, we assume that the image intensity distribution
is due to one of two known objects plus background noise, We consider
only the one-dimensional version of Figure 1 and that the objects are the
point source 4(a) located at the origin and the sum of two point sources
}o(e '"l) + 46(a -qz) located at n and 1, respectively., The images due
to these objects are denoted respectively p(f) and q(§). To enable

analytic results to be obtained, the point spread function is taken as

2, 2
hg) = —= e /2, (€3)

2no
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Thus using (27) the images are

2,, 2
p§) = -l-r et %

(84)
-lz'mr ’
and
2,. 2 2 2
q(€) = ?__l_ [e'(g"ﬂl) 20 +e'(§""12) /20 ] (85)
J2no

With this formulation the two states of nature are
@t BiE) = p(E) + n(g) (86)
@,3 biE) = q(E) + n(§) (s7)

where n(f) is the additive background noise. The block diagram of state

of nature w, is shown in Figure 2,
It is further assumed that the noise vector n (the discrete version
of n(§)) is white and Gaugsian with mean n = 0 and covariance matrix
Kn = o'nzl. ‘The more practical Poisson noise model used with a detector

is discussed in the Object Estimation section, Since n is Gaussian, the

conditional density functions of the image are also Gaussian and are

f(b/wl)-N(p,o'nzn @

(b/w,)-N(a,s_°1) (@)
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n(g)

q(€)

(@) —————s] h{£-a)

Figure 2. Block diagram of the optical configuration.
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where N(u, Kn) indicates a joint Gaussian density with mean vector u and
covariance matrix Kn' and b, p and q are, respectively, the discrete
versions of b{(¢), p(E) and q(t).

Using the techniques of statistical decision theory (Middleton, 1960),
we can at this point specify the optimum discrimination procedure. If
the two states of nature are equally likeiy a priori, and if the costs
associated with the two types of error (i.e., choosing ) when w, is trun
and vice versa) are equal, then it can be shown that the optimum decision
scheme (in the sense of minimizing the average cost or, in thie case,

the error probability) is the following:

choose w, if £(b) > 1

(90)
choose w, if ¢(b) <1

where

(b) = £b/w, M €lb/w,) (92)

is the likelihood ratio of the observed vector b, Since the natural

logarithm is a monotonically increasing function of its argument, an

equivalent statement is:

i
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£2
choose 0y if L(b) >0
(92)
%; choose w, if Liby ¢
% where
L(b) =2n2 (b). (93}

Noting that f(blwl) and f(b/uz) are Gaussian, substitution of /88) ar.d

(89) into (93) results in the decision procedure:

1
choose w, if {p-q)b > 4!q'q-p'p)

choose w, otherwise. (94)

Equation (94) is just the discrete form of the correlation detector or

matched filter, matched in this case to the difference between the

diffracted objects,

Equation (94) specifies the data processing necessary to make an

optimum decision, However, we wish to investigate more thoroughly the

consequences of using this procedure as diffraction and noise vary, To
accomplish this we evaluate the probability of error associated wi*h tl.e

discrimination procedure just described,
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Evaluation of the discrimination procecdure

There are two types of error which a discrimination procedure can
lead to: Choosing w0y when w, is the true state of nature (i,e., calling
the two point source a one poin! source in our case), and choosing W, when

W, is true. If decisionprocedure (94) is used, the error probability for

the equally likely objec:s is
P, = {P(G>P/w,) + 1P(GP/0))

P
=} [£(G/w,)aG + 4 f £(G/w, G (95)
P g
where G = (p=g)'b is the test statistic, p = %(q'q-p'p) is the threshold,
and £(G/w,) ie the conditional density of G given that w, is the true state
of nature. To evaluate the error probability we must find the conditional
densities f(G/uz) and f(G/ml);.

The Gaussian noise model allows these conditional densities to be
found by noting that the scalar statistic G is a linear combinaticn of
independent Gaussian random variables, and thus G itself is Gaussianly
distributed. To specify completely the densities £(G/w.), we need only
find the conditional means E(G/wi) and the conditional variances
var(Giui). These conditional means and variances are, in this case,

easily found. They are:
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Ky = EGlo)) = (p-q)'p
u, =E(G/a,) = (p+a)' q
o'lz = var (G/wl) Nrnz (p-Q)'(P"Q)
2 2 1
¢,” =var (G/uz) =o (p=q) (p=-q) (96)

Using (96), together with the Gaussian probability density function,
the probability of exrror is

2 2

% w0 e-(u""z)zlzo'z % P e"(u'ﬂ-l)zlh 1
P = i e du, (97)
e ! ijzz ;[ _!2mr12

Further aigebraic manipulation yields the simpler form

0 -u ,2 s &
P =f°__ du (99)
¢ JZﬂ‘
d/2
where
d 1.1 ' '!% 99)
7537~z (p=2) (P-9)} . (99)
‘o
n

i s
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Eiquations (98) and (99) are the important relations, In the work
that follows several quantities are defired which will enable us to extrost
a good deal of information from these relations about the probability of
error as the diffraction and noise vary,

In order to simplify (99) recall that (34) and (85) are the continuous
versions of p and q, Using a suitable definition as to the transformation

of continuous quantities to discrete and vice versa, it can be shown that,

when p and q are transformcd back to their continuous versions (99)
becomes

% ¥
g- = %- [—1—5 [p(€) - q(&)]z d&j 5 ' (100}

‘n'm

At this point note that the quantity in braces may be defined as *he

energy=-to-noige'' ratio
ENR = = =5 [lo6e) - aten)” o (101
n "o

where the term "energy'’ refers to the integral square of the difference

image. (The usual definition of this quantity as it applies to electronic

signals is the signal-to-noise ratio (SNR), However, in this paper we
reserve SNR for the more literal carr ~* rte signal refers to the true
observable image intensity or counts and noise refers to the sample mean

absolute variation of the noise intensity or counts,) *

,
——
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The analytical formulation of the detection problem is found by

substituting the images (84) and (85) into (100). Thus d/2 becomes

"("z""l

1
-n 140' -11 2145® )
9—- - 3+e - -
2 zm . (102)
cn

Note that d/2 depends upon both n, aad n, and not merely on their

separation (which we denotey = nz-ql), as might have been predicted,
Thus d/2 and P, both deperd not only on w.ie noise variance and diffraction
but also on the a priori choice of n, and Nye

It is not immediately clear from (102) just how diffraction nlays =

role in d/2 and P, In order to see this role more cle.. ly consider the

case when M = Ny

' 1
2,. 2 2,.2 B
d 1 [ lac’ | I 7}
5= 3+e - 4e (103)
2 £2 F _J .

Now the importance of the diffraction ratio R as defined in (28)

becomes more apparent since R is in this case

R= -f‘v'—'- (104)

where k is an arbitrary constant which together with o specifies the
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"width" of the point spread function (i.e., kr controls the aperture
opening) and 'Y being the separation is defined as the source width,

The basic trade«off between diffraction, noise, and P° can be seen

rather easily now. hen R becomes large ¢ = 0 for fixed o), then, as

one would suspect d/2 approaches zero which drives the P° to 1/2««the

worst case. Alternatively, when R becomes small {y < o for fixed o)

then

3

a_[ 3
4 l-_ .___._z____] (195)

Ua

and the probability of error reduces to a quantity which depends only upon
the noise variance crnz. Not until «rnz = 0 does Pe approach zero in this

last case. (The ratio R may also be varied by fixing v and varying o,

e UGtk i S e

Howc . ¢, as discussed previously, the qualitative results are similar,
and we have considered throughout the paper a fixed optical system which
views various objects,)

In addition to the above discussion on limiting cases, we wish to
consider a more detailed presentation of the variation between the
pertinent quantities. Figures 36 comprise the resulting presentation, :

In order to vary the a priori information, i.e,, 1 and Ty three cases

were considered: Case 1, 1, = =n,, case 2, n = -1/4 n, and case 3,

n, = 0 a2nd N, =Y. The variation of R vras appropriately accomplished

e

oot
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by fixing the aperture (¢ a 1/2) and setting k = 4; thus the point spread
function (83) contains 95% of its area within the "aperture width" of
40 =2,0,
The variation of the error probability with diffraction is shown in

Figure 3. The limiting cases discussed previously are evident: (1) As
R becomes smallex then P, for all of the curves approaches a quantity
which depends upon the noise; note that this quantity changes noticeably
as crnz for case 1 decreases fxrom 1,0 to ,001; (2) for R large then Pe
approaches 0.5. An inleresting feature shown in this figure is the
trade-off between a priori information, diffraction and Pe for constant
noise (o'nz = 1,0)s For R small case 1 (the two symmetrical point sources
compared with a source at ths origin) has the lowest Pe, but for R large
case 1 exhibits the highast Pe'

This result may contradict one!s intuition at first glance, but as
the images are studied for the 3 cases it may be visually seen that for
R small it is easier to discriminate between the images for case 1 than
those for case 3 or case 2, On the other hand, for R large enough that
the two symmetrical sources of case 1 are located "under'" the point
spread function {y < 2,0) then it is easier to discriminate between the

images of case 2 or case 3 than those of case 1 because one of the
asymmetrical sources of case 2 and case 3 remains outside of the point

spread function width longer. That is, R has to become larger (for
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case 1 than case 2 or case 3) for both of the sources in case 2 or case 3
to be located within the point spread function width,

To further illustrate the effects of the noiss level cn" on P_ Figuie 4
shows P_ vs. log (1 io'nz) for fixed large value of diffraction (R = 10. 0),
Thie figure clearly illustrates that even for R large, P;‘O for sufficiently
small cnz, thue confirming the notion that noise nct diffraction io tae
true limitation, It is also interesting to no%e the advantage of a priori
knowl. dge in that the figure indicates a savings of about 102 in a'nz (ENR)
when cace 3 is compared i» case 1 for Pa = 0, 0,

Figure 5 Indicates the db loss incurrcd by increasing diffraction
while maintaining a Pe referenced at R = 0,0, This figure shows that
the diffraction effect acts essentially like a ncise amplifier and indicates
that, regardiess of the initial noise level, the effects of diffraction alone
can cause considerable ENR loss, For example, if the discyimination
procedure producc:’ a sutisfactory Pe for R = ,4, then to maintain this
same Pe fur R = 4, 0 would require a 21,8 db increase in ENR.,

In reiteration of the concept of diffraction, a small R does not imply
that Pe"o since as 10 the P° still depends upon the uncertainty caused
by noise, In this respect the Pe for R small could still be rather high
{pechaps even .5)s Thus the db loss rhown in Figure 5 is that loss
incurred or similarly the increase necessary to maintain a Pe referenced

ouly with respect to diffraction,
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We also desire to indicate the variation of the db loss incurred when
the noise (o-nz) as well as diffraction varici, Figure 6 illustrates this
variation, In this figure the ENR is referenced by fixing both R and ¢ _°
such that Pe = ,05, Two points are ;lluotrated Vy this figure: (1) We
can, as was aleo illustrated in Figure 3, trade o'nz for diffraction and still
raintain the same P° (thie is seen as we observe for the 0 db reference
Joints that by decreasing o'nz from 1,0 to , 001 we can increaze R by a
factor of 10 while still maintaining a P, = 05)s (2) The large diffraction
effects are rather severe and could impose a severe limitation to th:
detection process unless the noise can be greatly reduced.

The results of : 1e detection problem just considered afford a rather
complete look at the basic problems imposed by diffraction and of the
basic relationship that noise (o'nz) can be traded for diffraction (R). The
next section asks a related question with regard to the information to be
regained from tho image and provides further insight as to the rather

broad applicability of the relationship just mentioned,

Separation Error Bound vs, Diffraction

In this section we investigate the error variance associated with
estimating the separation of two point sources when no a priori information
is given as to the location of these two sources, The problem is formu-

lated as follom.
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We consider the image due to two poinf scurces located at 0 and n,
and determine the covariance matrix of the errors in estimating LT and Nye
We then define 28 a new random variable the separationy = |~r|z-q 1' and
find the erxor statistics of this new random variable from those of n and
My

The model considered is

B(E) = alé, n,,n,) + nlE) (106)

whexe the observed signal is b{£) and n(f) is Gaussian white noise. For
these conditions Swerling (1964) has shown that the limiting elements for

the inverse of the error covariance matrix of n and n, are

o 34(€,n,,m,) da{E.n,,1,)
2 1’2 1’2
Bo= N, [ an, an de. (o7
“o0

Again we consider the case when the point spread function is

specified by (83)s Thus when x(a) = 6(0'-111) + 6(a :ﬂz)

cenr2e? an;z/zv"}
+e . (108)

alt,n n)=——‘-{e
0 1q0 % W'

For convehience let the covariance matrix of y y and n, be K, Then

from (107)

IR IR .
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&™), = ™)y, = (109)
r N N°c3
and
2,, 2
. - <% 4
(x l)lz = (K l)z1 = 2 (22w, (110)
4 N a5

From (109) and (110) var ('qi) and cov (ni, nj) can be determined,
Then, as referred to previously, we definey = n,-n, 2and determine

the error variance of this parameter (the separation) from

var fy) = var (n,) + var (n,) = 2 cov (n ,n,) (111)

The resulting limiting error variance of the separation is

V = 4N7 Noo's

2,, 2 - -1
. {1 N (142/2«2)} . (112)

This expression may be regarded as the lower bound variance for all
of the estimates of the separation which are minimum variance unbiased

estimates,
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We seek to investigate the variation of this error variance with
diffraction and noise, As in the detection example we fix e = 1/2 and
consider that R = 2,0/Y. The limiting cases are comparable to those
resulting in the detecticn example, Fox R large (Y=<0) then the error
variance approaches infinity and the separation betwesn the point sources
cannot be regained. V/hen R is small (Y~w) then

NO
V> An -3 (113)

and here as in the detection problem the error depends upon the noise
variance (in this case NOIZ = o'nz). Not until N ~0 dces the error
variance approach zero.

To further illustrate the trade«-off between the error variance and
diffraction for a fixed noise level we ccasider Figure 7 which shows the
db loss vs. 1/R (the separation in this case), The db loss is referenced
for R = 1,64, This reference was chosen because the general curve of
error variance vs. R has a weak minimum at R = 1.64. The existence
of this minimum appears to violate the general relationship that the
error is proportional to R, and as yet no physical or mathematical
reason is apparent which explains the existence of the minimura. However,
once R > 1,64 the same general relationship shown previously for the

discrimination problem exists betweea V aad R, For example, suppose
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The db loss vs 1/R for 2 fixed aperture and noise variance.
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that we weve satisfied with the error variance achieved for R = 2, 0;
then in order to maintain this error variance for R = 10 we must provide
for an increase of 10,8 db, Thus, as Figure 5 illustrates, the effect of
increasing R (decreasing the object size) is essentially one of amplifying
the existing noise level, and in order to maintain a constant error
variance we must increase the SNR., Also noted is the rather severe
limitation imposed by excessive diffractior. This same comment, as
we shall demonstrate, applies to the numerical solution when restoring
incoherent objects,

The next section presents and discusses several noise models which
are applicable to the restoration problem and develops the minimum MSE
estimate, which is used as the basic solution in this paper to restore

objects,

e e e SO e e D —
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OBJECT ESTIMATION

The sequence of this section is as follows, First we discuss ard
Present the noise models associated with the restoration problem, The
basic sources of noise conside~=J are the additive background noise and
the multiplicitative detzctor noise,

Next we consider using the functional form of the multiplicitative
density function in estimating the object vector from the Baysean approach.
This approach offers some insight as to how a priori object information
might be encoded, but as will b. discussed two basic drawbacks to this
aprroach are that the additive noise is consiiered as a non=-random

variable and that the use of a priori object information in the inverse

operator is not possible for the mathematical model considered.

From the Baysean approach we move on to the minimam MSE
approach. Here we consider the additive noise as a random variable and
are able to utilize a priori information in the inverse operator in a
strikingly similar manner to that shown by Phillips and Twomey, With

3 reasonable assumption for practical problems, it is easily demonstrated

|
§

that the MSE estimate, when multiplicative effects are considered, differs
only by a multiplicative constant from the case when these effects are
neglected. Since both of the noise models can be effectively represented

in the MSE estimate and since a priori information can be profitably
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encoded, the basic tool for object restoration used in this papor is
considered to be the MSE estimate,

Although the MSE estimate effectively accounts for noise and uses
a priori information, it is not the ultimate estimate, As an indication
of one of the areas where the MSE estimate cculd be improved upon, we

conclude this section by discussing the minimum distance estimate for

the object x(x).

Noise Models

Figure 8 shows the block diagram of the imaging piocess and

indicates the sources of noise,

The additive model

The general term additive noise, as previously used, has referred

to the observed quantity, either intensity or mean counts, which is present

when the ouject radiation is absent, The radiation which causes this
intensity o5t mean count fluctuation is often referred to as tbackground!

radiation and is that radiation which accounts for stray light fluctuations

as well 28 the background intensity in which the object intensity distribution

is immersed, Ve assume here as Helstrom (1964) doa2s that this noise

is basically additive, In discrete form the additive model is

b=q+n=Ax+n (114)
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Blo ¢ diagram of the imaging process with noise sources.
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baq+nmAx+n (114)

where n is the additive noise vector.

The multiplicative model

When the radiation strikes the detector, which is often a photo~
multiplier tube, a single photoemissive surface or photographic film,
the general nature »f the reaction must be described in statistical terms.
To more accurately describe this model the surface of the detector ¢
considered as being divided into N cells each with incremental wrea dA
small enough such that the iatensity impingiig upen any one cell is
constant. throughout that cell. In practice, it is convenient to characterize
the detector surfuce by a scalar parameter known as the quantum
efficiency, which we shall denote as n. Under suitable practical
conditions the mean number of czunts observed in a timo interval of

length T in each cell may be taken as

£ = Al p (115)

where bi is defined as the ith incoming intensity component due to signal
9 plus noise n,, L is Plankis constant and v is the menn frequency of the
quasichromatic radiation, Furthermore, the counts (number of resultine

photoelectrons) ki can be asswned for suitable conditions which have been
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verified in practice {iviandel, 1959; Goodman, 1965) to obey the Poisson
distribution

k, ~Db,
(Dbi) e
P(Z:ilbi) = X (116)
where
D= %' (117)

It also appears to be reasonable to assume that the counts in each

cell are statistically independent from those in another cell (Helstrom,

-Db
N (Dbi)ki - ©
D(k/b) aﬂ - (118)
1

wizere k is the count ve :tor with components ki'

Equations (115), (115), and (1138) constitfute the various stages of the

detector noise raodel,

Texaporal variation
As a further discussion of the noise raodels we elaborate on the
assumption that is ruade with regard to temporal variation. In the

Imaging Equation section it was stated that the scalar quantity as
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LRI

e MLt R L) i




75

described by (2) specifies the electromagnetic field radiating from a point
in the object plane as a function of distance and time. In carrying on

with the derivation of the imaging equation we assumed that no information
regarding time variation would be considered. To make this assumption
more explicit we state that the reason for this assumption is that
instruments for measuring intensity generally cannot follow the instan=-
taneous fluctuations at opticul frequencies (Helstrom, 1964), Thus, in the
strict sense the observed intsnsities (b and n) and the estimated intensity
x are time averages., This does not imply that the observed quantities

b and n are fixed and known, That is, we consider that a priori information
is available about these observable quantities, and in the general case we
consider that a priori information may be available about the object x.

In fect, in pracuice the time average will only be, taken over a finite
observational interval, so that from a practical point of view b, n and x
are only sample means and not true means, This consideration aliows us
to consider a more flexible modal of add Xive noise variation in that the
mean noise intensity n may vary from observation interval to observation
interval as well as spatially, In the practical sense then, n is still to

be considered as a random vector with covariance matrix Kn in which

any one or all of the terms in Kn are nonzero and reflect our uncertainty
about the true noise vector, Further discussion concerning time
variation is presented after the derivation of the MSE estimate near the

end of this section,

e = i R
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Discussion of the Bazoean Amroach

The motivation for discussing this approach is due to the general
insight which this method of estimation theory has in the past provided
for problems of this general type, particularly with regard to the
profitable use of a priori information.

The term Baysean as used here refers to the general estimation
schemes that have been developed using the density functions in Bayes!

theorem, For our problem Bayes' theorem is,

P(k/x) £{x)

i(xl k) =
[‘ B(k/x)f («)dx

(119)

where f(x/k) is the a posteriori density function, P(k/x) the likelihood
function, and £(x) the a priori density function.

Three estimates, the maximum likelihood (ML), maximum
a pocteriori, and Bayes! may in principie be obtained from (119) once
P(k/x) and £(x) are specified. We first present the derivation of the ML
estimate, Next we discuss a problem which arises as we attempt to
determine the Bayes' and maximum a posteriori object estimates, We
will indicate how this problem, which is one of mathematical complexity,
can be alleviated at the cost of losing the use of a priori information in

tne inverse operator, In conclusion we will present the form of the
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resulting Bayes! and maximum a posteriori estimates and discuns the
insight it provides as to the weighting of a priori information,

The ML estimate is defined as that set of purameters x (which for
this estimation procedure are regarded as fixed but unknown), such that
the likelihood function P(k/x) is maximized (Mood and Greybili, 1963).

In obtaining this estimate as well as those which follow in this discussion
the additive noise is assumed to be fixed and known.

Finding the onect estimate which maximizes P(k/x) in (118) is
accomplished as follows, Since the natural logarithm is a monotonic

function of its argument, we can equivaleatly maximize
L(x) = ¢ n P(k/x), (120)

Upon differentiating L(x) with respect ao an arbitrary component o. x,

say x ., and setting the result equal to zero we obtain

N[k T
aL(x) .5 : -D s, 30 (121)
o, im|fty
M
where q = z aijxj’ Noting that this equation holds forallm = 1,..., M,
j=1

then

vA = 0 (122)
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where v is an N x 1 vector whose ith component is
ki

Clearly, if A is square (MaN) and nonsingular, then the estimate x

can be found from

ve0, (124)

Since we have M=N equations of ths form

M ki
jilaijxjg D "% (125)

then we can solve for the ML estimate, which is
x= A-l(le-n). (126)

The ML estimate does not provide any new information which would over-
come the basic problem of an unstable A matrix whose inverse operates
on a noisy observed vector, It does, however, indicate that the ML

procedure results in the straightforward inverse operator which operates
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on a modified count vector (modified by dividing out the muitiplicative
detector effact and subtracting the fixed and known background intensity n),

As was demonstrated by Phillips (1962) the addition of a priori
information does alleviate the unstable A matrix problems; thus we seek
to investigate the Bayes! and maximum a posteriori estimates which use
the a priori density f(x). The Bayes® estimate considered here is
obtained by minimising the quadratic loss function, while the maximum
a posteriori estimate is designated as the vector x which maximizes the
a posteriori density f(x/k), The success in obtaining these estimates,
as far as mathematical tractability is concerned, depends largely upon
the form of £f(x). Herein lies the problem, referred to previously. The
form of f(x) must be such that one can mathematically solve for either
the a posteriori mean in the Bayes! case or determiine a unique vector x
which will maximize f(x/k). Thus far we have been unable to specify a
nontrivial f(x) to enable these estimates to be determined. The apparent
difficulty is due to the functional relationship between the object x and

the image Ax,

Iiilll[l!é!mmmL..iiiimﬂm!mtmﬁ.é{if!ﬂl‘lt!ili!iu%llIilll»!'5!5!!!Hllﬂ[lll\ilﬂll!!Hi!!l!limlmI!!lhllllilHm'Imi'_!ummn(W!llmuliium;lmf!mimltim;v|&Emlimm{mIm[iIH!IlHHIIlmiiIii?!?i'!ﬁ!t!tl!iile! ?lﬁl(!5!iﬁ!li?““‘lmllliliiilil[IMIIE!lIlHHlfﬂiﬂlﬂlﬂ!ﬁvIH!IHHHl!l!lmﬂﬂlIWHHI!H!H!M&SMHHRHWHIHZW!W!mﬂiﬁﬁf%

We have, however, been able to specify an a priori density for the

image vector b which enables the determination of the optimmum estimate ;;
for the image b, This density is the joint gamma density, which is ;:_g
, i

u - c =

i-l 5

£(b) = (127) .

i= l i,) %
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where the paramoters c, and u, specify the mean 51 = -‘-:-:- and the
variance var (bi) = ui/ ciz. Here we have assumed that the intensity bi
is independent frem bj for all i and j.

Utilization of £(b) as specified above with the Poisson distribution
allows the detsrmination of the a posteriori density £f(b/k), which is again

a joint gamma distribution with parameters D + ¢, and ki + u, which

i i

replace, respectively, the parameters ¢ and v, in (127), With the
specification of f(b/k) in the form of the joint gamma distribution, we
can solve for either the Bayes! or the maximum a posteriori estimate
for the image 'l‘;. Using this estimate we consider that a reasonable,
although suboptimum, procedure is to operate on b to obtain an estimate
for x,

This procedure is easily accomplished for the Bayes! case. Since

the Bayes! estimate is the a posteriori mean we have

ki-l-u.i

bi = E[bilki] = D_-l--c: . (128)
Using the proecdure just dis.ussed, we have N equations of the form

z, (129)
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For A nonsingular and (M=N) then the suboptimum estimate for x is
2aa" [k +5 -n) (130)
c ¢

where kc and ic are, respectively, N x 1 dimensional vectors with

components
k
1
k =
c:i D-l-c:i
and
g T
c:i D-l-t:i

with l;i = uilc 4o The suboptimum maximum a posteriori estimate for x
is found in a similar :nanner as that demonstrated in obtaining the ML
estimate. Its form is essentially that of the Bayes! estimate shown in
(130).

In order to discuss the insight Bayes! estimate provides in using a

priori information, we consider

"gz |D+c( ) i E-nj (131)

ngij D+¢

where the a;jl's are the elements of A-l.
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Recali that the constant D is defined in (117) and contains the
observation period T, If T becomes large, D becomes large and the

observed counts kj approach the moan counts 'j and thus k /D approaches

i

the mean iatensity bj.

The mean and variance of the jth prior gamma distribution are

ujlcj and ujlc 2‘ Thus, generally speaking small c [ values correspond
to large prior uncertainty, since the variance is large and the a priori
distribution is rather broad and flat,

Now refer to (131) and consider the case when o::j is small and D is
large. Here we see that the estimation procedure weights the observation
fmxch more than the a priori mean component Bj. This case corresponds
to very large a priori uncertainty, and naturally we have little confidence
in the a priori mean,

Alternatively, consider the case when o::j is large and D is small,
The situation is the reverse of that just considered, We weight the a
priori mean Sj heavily now and almost disregard the observation kj'

Here the estimation procedure reduces to one of essentially ""cleaning up'

or enhancing the a priori mean ﬁj.

Minimum MSE Approach

In this section the estimation problem is approached from a

different point of view, which does not require the specific functional
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form of the a priori density or the likelihood function to be specified, We
now assume that the additive noise vector /s random and treat two basic
types of MSE estimation, The first is the "classical" least squares
approach, which assumes that no a priori information about the object is
available and that the additive noise has zero mean ard covariance matrix
u-nz L. Secondly, we consider the more general case when the noise
covariance matrix is Kn’ and we take advantage of encoding a priori
object information in the iorm of the prior mean X and the covariance
matrix Kx.

Before beginning the two approaches the noise model is more

explicitly siated, Recall (115) and note that

M .
zilD = .E,aijxj + n, (132)
j=1
or
bi =X a'ijxj + R (133)

Since n, is a random variable, the quantity zi/ D or b, is now a random
variable, If n, has mean zero, which we can assume without loss of

generality, then the model is
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b=b+n (134)

where b = Ax and B is the mean of b.

Classical least squares

The classiral least squares approach presented here nas been treated
by several authors, The reader is refe. »ed {0 Mood and Greybill (1963)
and Deutsch (1965) for turther discussion, It is instructive to mention
that in the general case trcat.d by Deutsch (1965), the assumptior of a
linear relationship may be nece~.ary between the unknown parameter x
and the obse “ved random vector b, However, in the restoration problem,
this assumption is not necessary since the imaging process is inherently
linear,

We consider here the case for Kn = u-nzl. Tue parametsr x is chosen

to minimize

R(x) = (Ax-b)' (Ax~b) (135)
or alternativecly
N M 2
R(x) = Z (Fa, x.<b,)", (136)
i=lj=1 ¥ J
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The parameter x is determined in the usual manner by differentiating
R(x) with respect to an arbitrary element of x, say x and setting the

result equal to zero, In summation form

N (\‘1 A
Za, (Ta,x-b)=0, (137)
iz} ™ j=1 i !

since this expression must hold for allm = 1,,.., M,
AIA%R = A'b, (138)
If (A'A) is nonsingular, then the estimate is
%= (ara) A, (139)
When A is square and nonsingular
x=A b, (140)
Thus, the classical least squares approach results in the same basiz
inversion form as shown in the ML case and as s“atcd in the Iru.ging

Equation section. Even though statistical methods have been used in

attaining this basic form, we still have not been able to gai:: much
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additional insight which would enable us to .vercome the problems of
instability anG noise referred to earlier, The inclusion of a priori
information as shown next dces, however, provide counsiderable insight

into these problems,

The general minimum MSE estimate

Now we assurne that a priori information is available in the form of
the prior object mean x and the covariance matrix Kx. Information about
the noise ve’ tor n is assumed to be available as ~ncoded in the covariance
matrix Kn’ and we assume that the noise mean is zero. We further assume
that x and n are independen*, The procedure which follows in obtaining
the general result {149) was first applied to the restoration problem by
Rushforth (1965).

We postulate a linear model which enables the use of K , % and K .

We assume that x and the random inteneity vector b are related by
x=Hb+g (141)

where H is an MxN matrix and g is an Mxl1 column vector, We seek ’'{

and g such that the quantity

MSE = E [(x=~x)' (X~x)] (142)
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is minimized where x represents the true object. Once H and g are
determined, then the optimum estimate x is found by substituting these
quantities into the expression for X above,

Recall (114) that b = Ax + n, It can be shown (Rushforth, 1965) that

the vector g can be written
g = (I-HA)x. (143)
Substitution of (141) and (143) into (142) yields

MSE = tr{[ H(Ax + n) + (I-'I-IA);:-x]

[H(Ax +n) + (I-HA)a':-x]'} (144)
where tr denotes the trace of 2 matrix, Upon expanding (144) and
performing the expectation over x and n we can write (144) in the following
form:

= J" ] - - A
MSE = tr LH[A KA+ Kn]H' K A'H'-HAK_ + Kx} (145)

To solve for H we complete tae square in (145) and obtain
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=

e= u-{ [HAK A+ xn)% - K AYAK A + Kn)'%]

R

[H(A KxA' * Kn)% - KxA' (A KxA' + Kn)-%]'

-1
+K -K AYAK AV +K ) AK f (146)

Now the minimizing value of H is easily determined by equating either

one of the two expressions in brackets above equal to zero, Thus,

-]
= 4 d N
H KxA (A KxA' + Kn) (147)

Further manipulation reveals that H may be represented in the alternatc

form

H=@K A +k "t ag oL (148)
n b4 n

Using equations (148) and (143) for H and g the general expression for

A .
X118

x=(ak Ak H Ak b4k IR (147
n X n X

An important quantity to consider in the evaluation of how well E

performs is the MSE which results when x is used, The resulting MSE
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is found as follows, By substituting H into (146) and noting the equality

of (147) and (148), the MSE expression becomes

MSE = triK_~(A'k_“1a + K ")~ laik !
x n X n

-
L AKxj' . (150)

Thus,

~ -1 -l -l -1 -1 "l
] -
MSE = tr{(A KTA+K ) AK A + KK -AK A xx]} (151)

The quantity in brackets in (151) reduces to I; thus, the general expression

for the MSE reduces to

MSE = tr {(A-K: A+ K;l)"?. (152)

)

Multiplicative effects for the high SNR case

We assume in this paper that the observed quantity is either intensiiy
or mean counts, That is, the observation interval is assumed to be
long enough so that when the detector is present the actual number of
counts ki is a very good approximation for the true mean counts Z Thus

when

ke 2, (153}
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the optimum estimate for x is

1

X = [A'Kn' A+ x,:l]'l[mx;l(z/n) + x;li). (154)

In practice when ki deviates significantly from z, we must censider
a more sophisticated model such as that treated by Austin (1966) in which
he assumed that we observe counts as they emerge from the detector but
estimate the mean intensity x of the object, This treatment adds insight
(in the limiting case for T - o the estimates are the same), but indicates
that much mere complexity is involved in the restoration process when
counts are observed,

An increase in T essentially implies an increzse in SNR, The
evidence presented in the Analytic Results with Noise for Specific Cases
section and the Simulated Object Restoration section indicates that for
reasonable restoration (for R > 1, 0) we must consider the high SNR case,
These results indicate that the SNR must be high enough so that we can
neglect the more complex model and just consider the general case (154,
By high SNR we are implying, generally speaking, that for the diffractionr.
range considered (R > 1, 0) the SNR must be high enough to neglect the
detector except for a multiplicative constant,

Another way of stating the high SNR assumptior is to siate that the

SNR is high enough so that the central limit theorem applies (Parzen, 1960)
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and we have Gaussian rather than Poisson statistics. In this case it is

easily demonstrated that if ki'-zi then the use of Gaussian distribution

functions for f(z/x) and f(x) result in a Bayes! estimate or a maximum

a posteriori estimate that is equivalent to (154). Thue, the assumption
of high SNR ties the Baysian and MSE approaches together.
To follow up the earlier discussion on temporal variation, the high

SNR assumption implies that the observation interval is long enough so

. that n, b and x are sample means with respect to time that are near, but
not equ:l, to the true temporal mean. Thus, Kx and Kn reflect our
ignorance of the true quantities, As is the usual case, large elements
in Kn and Kx imply a greater uncertainty than small elements,

Next we consider special cases of the general estimate (149) and tke

MSE (152) and dascuss the trade-off between a priori information and

noise,

Discussion of the MSE estimates-~special cases

Il eing!

The trade=off bctween a priori information and noise is easily seen

il ST

when Kx = o'le and Kn = o'nzl. The general estimate (149) becomes

A ' 2 2_.~1 1 2 z': ..
x = (AtA to /trx I) (Ab to, /trx ) (1523
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2 2
Consider the case when o, >0 . This case corresponds to large
a priori uncertuint, “%ere, as before in the discussion of tho Bayes and
maximum a posteriori estimates, we tend to weight the observation vector

b much more heavily than the prior mean X, On the other hand, when

2 -
T >> cxz, we have a noisy observation vector b and we weight x heavily,

Expressions (149) and (155) gives us more insight than (130) in that
the basic inversion operator is also modified in accordarce with a priori
information. Note the similarity in form of {(155) and solution (47). The
analogy between the various quantities in these two equations is also
evident, Particularly is this so when the covariance matrix Kx is
compared with H and the a priori mean » is compared with the a priori
vector p. The fact that noth of these approaches result in the same basic
form further erhances the use of a priori information in the inverse
operator, and it will be demonstrated that an essential part of the
rectoration process is the stability control offered by use of this
information,

In order to show how the general case (149) reduces to the classical
MSE estimate (129) and to introduce the problem of measurement
selection, consider the case when there is essentially no contribution due

to 2 priori informaticn. In this case the estimate (149) may be written

2= @k Ay (Atx:b). 1)
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This is known as the Markov estimate and corresponds to the minimization

of the weighted least squares

RGP D T PO N TR N T R

R(x) = (Ax=b) xn‘l (Ax=b) (157)
where as before Kn is the noise covariance matrix {(Deutch, 1965). Wher:

Kn = o'nzI, the white noise case, the estimate in expression (156) reducen

as it should to the classical least squares estimate of (139).

When the elements in Kx-l are small compared with thcse inA'Kn'lA

the error (152) reduce:: to
el ]
MSE = tr {(A'Kn A) 1. (158}
2
When K =0_ I we have
n n
2 -1
MSE = L tr[(AtA) 7], (159}
or the equivalent form

MSE =s¢ < g 'l/ C (16
n =M T
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where the \; are the eigenvalues of the A matrix, This fcrm (160) was
also suggested by Barnes (1966b) as an important form to consider when
studying the effects of diffraction when using the clasgical inversion
proce s,

When Kn is specified in (158), only the A matrix can be varied to
reduce the exror, This is both a nontrivial and important problem., It
is nontrivial because it is very difficult to solve for optimal conditions
that will specify the A matzix for each restoration, It is important
because, as will be shown, the MSE can be reduced considerably (by
several orders of magnitude) by just knowing where to measure the image
and where to predict the object,

. Austin (1966) has been able io solve for the optimal condition in a
special case. The special case is one in which the image is assumed to
be the summation of equally spaced diffraction patterns from known point
sources which are separated by the Rayleigh distance and Kn = o'nzI. Foz

this special case he showed that the optimum image measurement

locations are above the known point source locations which are transf rrec

to the image plane, In this case A = I, and the MSE becomes

MSE =o'nz M. (161}
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In this paper we consider the more general and more important case
since we congiuer here that the object is to be both unknown and continuous
and that the diffraction effects are severe enough so th .t we must predict
at points separated by a distance which, for most cases, is only a emall
fraction of the Rayleigh distance. To further specify the case we consider
in this paper, we reiterate that the value of R is to be greater than unity,
(The case Austin (1966) considered holds for R <1.0, For R = 1,0 the
number of point sources M = 3,0,) ForR > 1,0, the optimum scheme
for choosin: the A matzix parameters has not bec solved, However, in
order to provide a rather complete computational procedure, the variation
of the parameters which determine the A matrix, and thus the MSE hac
been extensively studied by numerical methods, Results of this study
and the computational insight which they provide for the working
restoration procedure are presented in the seciion entitled "MSE
Variation--Choosing the A Matrix Parameters, "

Perhaps the outstanding problem which remains to b solved is that
of initially estimating the size of the diffracted object, This important

problem is discussed further below,

Minimum Distance Estimation

Minimum MSE estimation considers the minimization of functional

differences between the predicted object and the true ohject, The integral
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equation, howeve., requires that we also choose othar parameters before
the vector x can be estimated, For example, M, N, the aits, the £i's
and the w; must 711 be chosen bhefore estimating ::;, Evidence for making
intelligent choices for a'l of thase parameters is discussed later, Hure
we present a minimnum distance criterion which accounis for both the size
and functional shape of the sbject,

Visually, diffracted objects appear smeared or spread out. The
size of the true object is not known, To effect a better r::storation than

the MSL estimate wu consider choosing a and x such that the following

mean square distance is a minimum:

a=E {[ﬁ(&)-x(a)]' [x(@)-x()]

+[3-°']‘[3'-¢]} . (162)

The minimisation of this expression implies choosing @ and x together.
No anzalytic results have been obtained for accomplishing this task, The
problem thusfar has been that the size and object functional values are so
intimately related that we cannot estimate one without knowledge of tae
other,

In the absence of an optimum size estimate, the object size and
likewise the diffraction have been initially estimated by subtracting the

pow.: spread size from the imag:s size, Using this initial size estimate,
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we have then sequentially estimated the object size and shape togethcr,

However, it appears that we can do better, and future efforts undoubtaedly i

should consider this problem,

i
e

b
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SIMULATED OBJECT RESTORATIONS

In this section we present the results obtained from actual numerical
computations performed on a digital computer which simulate the
various restoration solutions developed previously., The major computer
program used in performing these simulations is presented in the
Appendix, All of the solutions which utilize a priori information in the
inversion process have been investigated, The MSE solution with the
additional computational feature of iteration has been used most
extensively,

For all of the simulations we have considered the one~dimensional

incoherent point spread function
h(t =) = sinc>(ta) (162)

where we have fixed the aperture, as previousl?' discuased, so that the
Rayleigh separation is unity, (Equation (163) describes an optical
configuration with unity magnification. This involves no loss in generality
since it is always possible to normalize the object;image coordinates
so that the magnification is unity.) Using (163) the imaging equatior is

a

b(E) = f sinc’ (g )x(a)de. (164}

=a
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Results are presented on the interrelationship between the diffraction
level (R), the ncise level in the image and point spread function, the
choice of parameters which govern the A matrix, and the amount and type
of a priori information used, Also considered is a method of smoothing
the image when we enco.nter excessive noise,

In this section the results of the interrelationship just mentioned are
discussed as the section proceeds., For a summary of these inter=
relationships and the computational scheme which has been developed
the reader is referred to the Summary and Conclusions section, The
computational scheme is also discussed in the next section entitled "MSE
Variation--Choosing the A Matrix Parameters, "

Before presexting the simulations, it is necessary to present a
clearer picture of the simulated restoration process by discussing three
gcneral areas, These areas consider the objects to be restored, the
image and A matrix accuracy, and the choice of a restoration improvement

criterion,

ggjecta to be Restored

Basically four objects have been considered, These are the uniform

pulse,

1.0 for -a<a'<a)
paiuind 4| g
x{a) = { 0 elsewhere f (165)
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the smooth pulse,
cos kna for -a <a <a?
x(a) = { 0 elsewhere J (166)
two uniform pulses,
_ (ls0for -a, <a <a S
x(a) = -a; :<:a 33; (167}

0 elsewhere

and two smooth pulses,

(E:oa kn(x-¢) for -a; <a _<_a1"'
x(e) = z ‘ -ay <« _.<_a2 “ (168}
0 elsewhere,

The motivation for considering these basic objects was as follows.
First, recall that the solutions investigated utilize a smoothing parameter
which in the MSE case depends upon the noise variance o'nz and the a priori
variance o'xz. Phillips (1962) has mentioned that his solution should work
for x{a)'s that are smooth, In order to gain an estimate of the loss
involved when the objects are not smooth, varicus smooth (cos kna) and
non-smooth (the uniform pulse) objects have been chosen. Secondly, it
is interesting to determine how well the restoration procedure can

restore split sources, Such objects are certainly difficult vo restore

(perhaps the "worst case' would be a large number of split sources

s e SRR i a satiirghlihe i
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which are very closely spaced), and they provide a more absolute
criterion as to how well the restoration procedure performs, Furthermore,
the resolution of split sources which have been excessively diffracted

provides a good compariscn with the classical Rayieigh criterion,

Image and A Matrix Accuracy

As has becn previously emphasized, noise is the limiting factor in
the restoration of optical objects of finite extent, Thus, in the simulations
which are to be presented it is important that we specify the procedures
used to obtain the image and A matrix and to provide measures as to the

accuracy of these quantities, This section presents this inflormation,

Obtaining the images

The images used for the restoration process were obtained by
numerical integration using Simpson's g1adrature. The motivation for
using numerical methods was essentially twofold. The integrat:ions for
a variety of sources one may wish to consider cannot always be performe-
analytically, Also, since the restoratior. process is one of ''inverse-
integration, ' then it is natural that one would learn from the forward
process, particularly in regard to the choice of the number of points for

a desired accuracy. A third consideration is that a numerical procedure

v ligfide s 1

allows one to determine the image for arbitrary arguments, while the

analytic image (if available) may be difficult to obtain for some arguments.
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All of the images were noisy in the sense that only a finite number
of significant figures were known, Specific bounds or limits were not
derived which would enable us to explcitly state the exact number of
significant figures used, However, the number of significant figures
available for use in the restoration was estimated in each case.

In some cascs the image accuracy available was limited only by the
number of points chosen to approximate the integration. These images
were accurate to at least 4 or more sighificant figures and are referred tc
as the '"no-noise' imagecs. To obtain images with less accuracy than the
no-noise cases, the accurate images were perturbed by an additive
random variable,

The determination of an estimate for the available significant
figures and other measures of the amount of noise used in the various

restorations are diacussed below.

Image accuracy--''no-noise'' cases

Here we define for convenience the quantity MSF as the minirn.m
number of significant figures available in the image. This numbey (MSX)
is recorded on all of the restorations. The estimation of the MSF for the
various sources follows,

The images due to the uniform sourc can be found in terms of the

integral

———
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a
b(E) = fsincz(g-a)da (1€ 9)
-a
which is
_ (€-a) cos 2n(E+a) -~ (E+a) coe 2w(E -a)
2w (E+b)(E-a)
+ L sifen(g+a)] - st [2n(6-2)] | (170)
where
x -
Silx) = /“ sin u du.
o

Using (170), the numerical image accuracy from the computer was
compared with the true value {170) for at least one image argument, The
minimum number of significant figures tc which these two values agreed
is defined as the MSF,

To obtain the images resulting from the smooth sources, cne must

perform the integration

a
b(g) = [sinc’(§ =) cos kn (a-p) az. 17

-3
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This integration is not easily performed analytically, nor is an
estimate of the error for Simpson's summation easily ottained.

For these images a rough one significant figure approximation wa=s
determined analytically which insured that the imagc values were of the
right order of magnitude, As a further check, the number of increments
(points) in the integration interval was increased while comparing the
image values obtained. The MSF was recorded as the minimurn number

of significant figures to which the two numerical values agreed.

Image accuracy--additive noise cases

In the simulated restorations, the noisy image was obtained using

the additive model

b=b+n (172)

vhere n is a Gaussian random vector of mean zero and covariance matrix
c'nzL Thus, b is a Gaussian random vector with mean b and covarizcnce
matrix o'nzl. In each case where noise was added, the true '"no-noise'!
image value (Ei) was known accurately and then perturbed by the random
noise sample, Thus, when noise is not added, it is assumed that the M°T
described previously are available for the restoration process.

It is desirable to determine a criterion which relates o-nz to the

number of significant figures available for various image strengths bi'
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Several criteria could be established to find such a relationship, Tko
criterion chosen is explained below and is one which agrees closely with
the actual simulated results.

Let the true value Si = 1,0, and consider choosing u'nz such that

p[ - <n <4 =4 (173)
and
Pln, <-3] + P[n, >3] = 4.
Thus
P[§ <b, <1.5] =1 :174)
and

P[b, <41 + P[b, >1.5] =1,

Now consider the following rounding procedure, {The image values
were not actually rounded tut the procedure is considered here purely
for establishing a2 reasonable o'nz vs, significant figure relationship, )

Suppose we setb, =1,0if ,5 <)

i
if.bi>l.5we set b

i

= 2,0, Thus there is a probability of . 5 that bi vritl

L1.5, Ifbi_<_.5we setbi=0.0, and

i

bt

i,
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have two significant figures and a p-obability of . 5 that bi will have no
significant figures, In this case the mean number of significant figures
is 1.

To find o'nz we have

Slon _uz,?_

P[$>n>%] = [ e«li;
-.'Slcrn

N

du = (175)
2 . e . . 2
and e, = 55, For 2 significant figures and bi = 1.0, we find LA such

that

-1
P{. 05 >ni>.05] =3
and

P[n, <. 05] + Pin, >.05] = 4. (176)

The noise variance is o-nz = , 055,

Figure 9 presents log [l/u'nz] vs, the mean number of significant
figures for the various image strengths used. The cross hatched region
is the region used most frequently in this paper,

Since each image varies in strength as a function of its argument,

then for c'nz fixed the number of significant figures available varies over

-oviibifibiitas oo

it b
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a ra.uge of value’ This range cerresponding to a fixed value of c‘nz is

defined as SFR, and when o-nz > 0 it is recorded on each restoration.
As u further measure 2f image roise level we usa the following

sample mean abiolute error:

b, -b
| i~ 0 (177)

To indicate the rrlative magnitude of the noise the following percentages
are defined,

¢ x100
s

pmix 3 Si (max) °*

(178)

¢« x100
8

Prin ® E (min) *

In (178) the sample mean error is computed as a percentage of the true

"no-noise’ maximum and minimum image measurements used in the

restoration process. The reciprocals of these quantities are regarded

as indications of the maximum and minimum SNR's used.
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Obtaining the A matrix ]

In practice the point spread function could be either messured or
analytically approximated, In eithe:r case some error is involved.
However, it is well to keep in mind that the A matrix would be less noisy,
for mar.y applications, than the image because the point spread function
could be accurately determined from many samples of the transfer
function in a controlled low noise laboratory situation.

We have considerc: two gencral cases of A matrix accuracy, one
which uses the full analytical accuracy of the computer to determine the
A matrix, and the more importunt practical case when the A matrix is
noisy. In the latter case several levels of noise were considered which

exceeded the image noise.

A matrix accuracy

The additive model used in obtaining the noisy A matrix may be
considered from two equivalent viewpoints. First suppose we have a
noisy A matrix consisting of the irue A matrix plus a B matrix composed

of Gaussian random variables., Thus the image is

b = (A + B)x, (179)

or

b = Ax + Bx. (160)

I
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Since Bx is a vector whose elements are lineay combinations of Gaussgian
random variables, the elements of Bx are also Gaussianly distributed.

Thus, Equation {1R0) may be alternati~. - written as
b=z=Ax +n (181)

where n = Bx. This model is equivalent to the original additive mode!l in
Equation (114). Alternatively, if the A matrix or the point spread functioa
is determined by measuring the image response to a point source, then

we may write the imaging equatior as
a.=a,+n, (182)

where the 2., are the true values and ni is the additive background noise

ij

referred to previously,
To obtain the noisy A matrices £quation (182) was used with n ~
2 - 2 - .
N(O, o A ) and aij ~ N(a.ij, €A )}» The a'ij values were the analytic values
obtained by the computer, V/henc AZ = 0 the full analytic accuracy of the
comnuter (usually 8 significant figures) was used.

For the noisy A matrix cases we have chosen to indicate the level

of noise by defining

TIPSR —
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NM a1 -a1
¢, =23 L1 (183)
A i=1 j=1 NM

as the sample mean absolute error between the random variable a, and

ij
the true analytic value ;'ij° Then we compute
¢, x100
P = ;“:-(—-—). (184)
A ij

The minimum percentage is not computed because the a, (min) valuce
were often zero or very close to zero, Thus the effective SNR for the

noisy A matrix elements ranges from a minimum of zero to a maximum

of IIP .
A

Improvement Criterion

The choice of a measure which indicates restoration improvement
over the initial object estimate in the absence of data processing (which
we have assumed throughout is the image) will likely depend upon the
application., In the absence of a specific application we consider two
improvemert measures, the ad-hoc or intuitative visual measure and a
mathematical measure. Generaliy speaking, these two measures should
agree, at least on a qualitative basis,

In many problems one can assess mathematical improvement by

using the '"'standard" squared error (SE) criterion which is

! gl .ii-m(«!,.':nx.(
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M 2
SE - ifl (xi = xi) (185)

where Qi is the estimate resulting from the restoration process and x,

is the corresponding value of the true object, e have defined the

general term squared error (SE) so that the term for mean square error
(MSE) can be used exclusively as defined previously, The major diffcrence
between the MSE and the SE' as shown above is that when o'xz is finite we
are inferring the possession of a priori information which we do not
actually have, If the prior gueas for the object is the image, then a

finite c‘xz will weight the image zo0 that the estimate will, roughly speaking,
lie somewhere between the lmage and the true object, but because rrxz is
finite we do not know the exact error involved.

To continue the discussion, it was evident that visual improvement
could not be assessed only by SE improvement. In fact, as will be
illusirated, there were scveral cases when visual improvement was
apparent, but there was actually a decrease in SE improvement, The
dilference is due to the fact that the SE does not account for object size.
The squared distance (162), on the other hand, does include size erroz,
and it agreed more closely with the intuitative visual error, Because

of this agreement we have chosen to indicate mathematical improvement

by computing the following ratio

3
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M 2 2
M

A 2 A
151[("&”‘1) ”"i"’i)zl

1d%) =

(186}

where the xi's and ails are, respectively, the true object values and
arguments and M = N. Mathematical improvement is shown if I(dz)
exceeds unity,

Of course there is some arbitrariness as to the choice of parametors
in (18€), For bi’ §i, and M the values were taken as those actually used.

The x, and @ were chosen such that the @, were equally spaced in the true

i i

and corresponding ?‘i were chosen such

that the estimated object wus reasonably represented in the estimated

nonzero scurce interval, The @ i
nonzero source interval, To clarify this last statement it was assumed,
on the basis of a posteriori information, that the regions where the
estimated object was negative or small positively were regions where the
estimated object intensity was gzero,

The presentation of I(dz) on each restoration will allow a more valid
assessment of improvement over the image. Unless otherwise noted,
the I(dz) shown on the restorations is the improvement of the last iceration
over the image,

It is well to remark that there are two general categories of simulatec
restorations; those which assume essentially no prior size information

and those which do assume some prior rize information. In the former

HHb
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case I(dz) will present a valid improvement critexion, However, for the
latter case much of the I(dz) improvement may be dve to the fact that
the term (a i 1)2 i. near zero while (.‘,1-a'i)2 is still large, That is,

for the latter case it may well be that much of the I(dz) improvement is
due to the assumed size information. Throughout the results which
follow we have been careful to emphasize those cases in which prior

size information is assumed so that the reader can more critically assess

the restoration improvement.

Results of the Various Restoration Schemes

The solutions investigated by actual simulations are identified as

follows:

Solution Description

Equation Number or Rzference

MSE (155)
Phillips-Twomey (44)
Dynamic Programming==Area (78)
Dynamic Programming~--Prior Vector (Bellman, 1965)
Matrix version of the area constraint (66)

To identify which solution was used and the various parameters involved,

the following information block (Figure 10) is placed on each restoration,

Run
M| N |Quad [R1 | R | )\ | Area|Prior | Iter
Z ) . rA
m-nz Tx P’_na'x Pmin SFR ;MSF !c' A {Pmax A
I (5 I

Figure 10, Information block,
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Vhen the symbol NA appears in place of any of the quantities in Figure 10,
it means that the quantity does not apply for the case in question,

Run is an identifying number. The first row of quantities under Run
specifies the measuring and predicting scheme used and the solution used,
The next row indicates the image and A matrix accuracy and the a priori
variance crxz when o'nz is specified, The last row indicates the mathe-.
matical measure of improvement, The quantities M, N, 3\, R, o'nz,

P ,» P in’ SFR, MSF, o AZ. P , and I(dz) have been explained.

A
Further explanation of these parameters, as applicable, and those not

previously mentioned is presented below,

The foliowing explanation refers to the parameters Area, Prior,
and Iter, which may be used to identify the type of solution used. To
avoid any possible confusion, ths solution description is also recorded i
each of the figure captions. When Area is greater than zero it is the true
area under the object and indicates that the area constraint was used.
Vhen Prior is greater than zero then the prior vector constraint was use-,
If Prior = 2,0 then the image was used as the initial prior vector. When
Prior and Area are both zero.then the Phillips-Twomey emoothing matrix
was used. The quantity Iter is the maximum nur.ber ot iterations used
in the iteration procedure, In the cases where Iter > 0 and the Phillips-

Twomey smoothing constraint or the matrix, version of the area constrair.:

e
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were used, this is an indication that only the initial prior vector was
determined by these methods, Further iteration used the MSE solution
(155).

The variance cxz specifies the amount of pseudo-priori information
assumed in the smoothing ratio c'nzlc'xz. Figure 11 shows o-nz vs, o
for various cnzlc' 2 ratios, The crosshatched region is that used most
frequently in this paper.

The ratio

Rl = Meal.nrin& ?nterva.l width (187)
Predicting interval width

relates pertinent information about the measuring and predicting scheme.
The proper choice of this ratio, as will be demonstrated, can significantly
alter the MSE in the restoration process, In order to differentiate
between the cases when one prediction or two prediction intervals were
used for the same level of diffraction R, the prediction interval width
in the latter case is taken as the sum of the two intervals,

Three different quadrature weights were investigated. V/hen
Quad = 1, 0 the inost extensively used, and most powerful, Gauss
quadrature is indicated; Quad = 2, 0 corresponds to the use of Simpson's

quadrature, and Quad = 3,0 refers to the case when the weights were

unity.
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Effect of prior information in the inverse operator

Agr an introduction to the computational work a sequence of figures
is shown illustrating the importance of uaing finite crxz in the inverae

Operator.

Figure 12 shows the restoration of a uniform pulse by operating on a
low noise image (MSF = 5, 0) with the atraightforward matrix inverse (32).
The esti 4 object is in exror because more measurements are necded
in the restoration procedure to adequately describe the object. That is,
the restoration is quadrature-error limited.

To reduce this error the number of points in the [-1, 1] interval
was increased frora 5 to 7. Figure 13 shows the results,and the improve-
ment is noticeable, Now the question to consider in further improving the
restoration is the upper limit of the number of points one can use in the
interval [-1,1]. The answer to this question is that the number of points
for reasonable restoration depends upon the system noise. In fact the
MSE (159) depends upon the number of points one uses and increases
rapidly as this number increases, If the system noise o'nz is not small
enough to overcome this increase in dimensionility, then poor restoration

results, To illustrate this, the noise level of Figure 13 was increased,

The noise variance was raised to 2,5 x 10"3 which resulted in 3 SFR of

1,4 - 1.7, while the previous image accuracy was at least 5 significant

e
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Cperation on the noisy image, in the same manner as befors (32),
produced the oscillatory object estimate shown in Table 1 below. This
estimated object is meaningless, The ims_s noise is now the limiting
factor. A similar result in tcrms of an oscillatory solution was obtained
by increasing the dimensionality {5 9 and using the ''no roise' image of
MSF = 5,0,

The agssumptiorn of finite prior information can alleviate the oscillation,
Consider Figure 14 where we have assumed o‘xz =2.5x m"z and used
the Phillips=Twomey solution, The reduced SE in Figire 14 over the
values shown in Table 1 confirms the usefulness of a priori information

in the inverse operator.

2?
Table 1, Estimated object and arguments for infiniteo “.
—————— x

r

2 a
=300 «1.)
+200 - .67
~700 - .33
+400 0
=700 e 33
+200 07
-300 1,0
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The sequeatial estimation of a uniform pulse

Herc we present results on the estimation of the size and shape of

2 uniform pulse which has been diffracted 5 times greatcr tian the level

IR R 2O

corresponding to the Rayleigh resolution criterion for two point sources

(R = 10,0). The importance of these figuras is that they demonstrate

ORI

the sequential estimation of an object which has been excessively
diffracted, for the case when we have assumed virtually no a priori
information about the true object,

Figures 15-20 present the series, The initial size in Figure 15
[1.0, 1,0] war assumed larger than one would estimate on the basis of
comparing widths of the puint spread function and image, However,
notice that the size is substantially redured from [-1.0, 1.0] to [ -.46,
+46]. Using the updated size estimate the next figure shows further
improvement in size along with shape improvement. This trend continuca
until Figare 19, which no longer indicates noticeable size improvement,
No attempt was made to "push'' the results to a limit by iterating further.
However, the impending improvement in .ize and shape is apparent.

When the size is assumed smaller than [ -, 2, .2], Figure 20 showa

that the end-points of x tend toward larger values than the true object.
This suggests that the actual size limit of the restoration process has

been exceeded, at least for the particular value of crxz used,

A R
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The sequcntial estimation of a smooth pulse

Results are presented here for the restoration of smooth cosina
pulses, These restorations may be comparer. visually with those
presented in Figures 12-20 to asscss the loss incurred when the objects
are not smooth but have sharp cc-uers. As in ihe last series (Figures
15=-20), these figures dem nstrate restoration when no a priori object
information is used,

rigure 21 showe that the source cos (ma/2) having undergone a
diffraction such that R = 1,0 can be very closely restored. S5ince the
diffraction was small only one size estimate was necessary.

‘The :stimation of the source cos (2wz) is shown in Figures 22-26.
Both the diffraction and image noise are greater than in Figure 22, but
the xinal restoration Figure 26 is comparable to that of Figure 21, This
suggests that c'nz in Figure 21 could have been increased withut
significantly degrading the restoration,

Figures 25 and 26 are identical except for the prior weighting,
Figure 26 (cxz = 102} shows an increase in restored detail in both the
first and 20th iter:*ion, However, iteration 20 is asymmetrical, This
feature is visually noticeable at the interval endpoints and occurs due
to computational effects within the computer. A computational alternative
is to choose a lower value of cxz, begin with a more stable initial solution,

and iterate longer, Here again, the solution eventually becomes unstable,
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However, we have the option of picking any solution between
iteration 1 and 20 of Figure 26, Iteration 6 was very close to the true
source, and one could ascertain by visually observing the plotted estimates
that, as the nuinber of iterations incresased beyond 6, the computational

inaccuracy began to incroase.

The sequential estirmation of split uniform pulses

In this series (Figures 27-32), we can asgess the importance of prior
size information. It is demonstrated th:t the lack of size knowledge can
seriously affect the ability of the restoration process to restore object
detail, It will also be shown that we can alleviate this problem somewhat
by considering various size estimates and using an alternate size
estimation scheme in which we initially choose a very small size estimate
instead of a laxge one as used previously,

Figures 27-28 illustrate an effort to determine the outside size of
the object, Notice that iteration 20 for o'xz = 10"z is badly distorted, but
for o'xz = 1.0"3 the 20th iteration is stable. These figures suggest that
the noise level is sufficiently high to limit outside size determination,
at least for the values o o'_:' and the number of iterations considered.

Figures 29-30 show considerable visual improvement over Figures
27-28, This improvement is attributable to the assumption of the true
outside aize in Figures 29-30. A comparison of Figures 29 and 30 allows
a visual assessment of the effect in changing d'nz, (afnz = 10-5 for Figure

29 but is rednced to 10~° in Figure 30).
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Figure 31 presents a restoration in which *he assumed outside size
interval was smaller than the true value. Note ths high values at the
endpoints of x which, as before, suggest that the size estimate is too
small, This figure also illustrates that the SE is rot adequate in
measuring improvement becauss it is evident that there is considerable
gain in visual information, but the SE actually shows an improvement
decrease. These results add additional insight to the size and shape
estimation procedure. They indicate that we should, in any case,
consider both large and amall size estimates, Also indicated is un

alternative size estimation procedure, which initially chooses a small
prediction intexval close to the image maxincum,

Figure 32 shows a single run attempt at restoring 4 narrow closely

spaced sources, The restoration does indicate two regions of enhanced

object intensity which could be further investigated by using split

prediction intervals, as demonstrated below,

The sequential estimation of two split smooth pulses

The last series showed results of estimating the outside size of 2
spl’t object by assuming various size estimates. Here we demonstrate
(Figures 33-37) tha use of split prediction intervals in estimating the
inside size of a split object, The last two figuz .s (Figures 38 and 39)

illustrate that we can resolve two narrow pulses which have been

excessively diffracted,
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In the series, Figures 33-37, on split prediction intervals, Figure 33
establishes the initizl inside size. Figures 34-36 indicate further
improvement. Notice again how size improvement generally implies
shape improvement, Figure 37 shows the improvement when the true
size is known, These figures illustrate that, even though the objects are
diffracted to a level twice as great as the Rayleigh level, there may be
a possibility of not only resolving the objects but of restoring detail as
well,

A8 a follow up of the sequence just considered, one logically seeks
the minimum separation between two objects which will still allow the
two objects to be resolved, This minimum separation was not found
analytically as a function of noise parameters, but Figures 38.39 show
results obtained from the restoration of two wplit sources which are
diffracted more than 5 times the usual Rayleigh level.

Figure 38 presents the results for a relatively high SNR case, and
Figure 39 shows the impending cost for an increased amount of image
noise. Both figures clearly - :v that the sources are resolved, Based
on these results split prediction intervals can be used to further enhance
and restore the "'bright spots. "

Before continuing it is well to reiterate that we have considered here
a general restoration procedure which proposes to restore general objects

in every detail, 1/e have assumed that very little prior information is
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available and have been careful to point out those cases when prior size

information was used, If the problem were to find the minirnum separation

given that two point aources made up the object we could undoubtedly do
better, in terms of both noise and diffraction, than the results chown in

Figures 38-39,

Restoration using a noisy A matrix

Results showing the effect of various amounts of A matrix uncertainty
coupled with noisy image measurements are shown in Figures 40-45,
These results are likely the most practical of any shown thus far and

clearly indicate the possibility of using the MSE restoration procedure in

practice,

=%
All of the figures have the same image noise (o'nz =10 7, SFR =

1,3=2,1), Three A matrix noise levels are represented: ¢ 2 - 10"5

A ’
o AZ =102 ando A" = 10"2, The first 3 figures use an initial size
estimate of [«,5, .5] while the last 3 use an updated size estimate of
[-.27, +27]. Again we note the markad general improvement in shape
when the gize estimate is closer to the true size.

The first two figures, Figures 40 and 41, have the same A matrix
and image noise but illustrate the computational advantage of using a
smaller ’xz (0,2 = 107 in Figure 41 while = * = 10~ in Figure 40) to

obtain a more stable initiai solution, which can be iterated longer and
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thus produce a hetter restoration, Figure 42 then shows the cost of
increased noise on the improved solution of Figure 41,

Figures 43-44 show the same cost as Figures 41«42 when the noise

is increased from UAZ = 10'5 too AZ = 10'4, except that the size is now

assumed to be closer to the true size. The improvement is noticeable

in Figures 4344 over Figures 41-42,

The last figure in this series, Figure 45, illustrates the further

cost in rastoration detail when the A matrix noise is further increased

to u'Az = 10-3.

Imagg smoothing_gr the low SNR Case

Now we consider the question of what happens when we encounter
excessive image noise, Suppose the image we ha- . at our disposal
appears to be too noisy to improve., We consider here a possible approach
to this problem by smoothing the original noisy image in accordance with
prior information inherently available due to diffraction effects,

Figure 46 presents a restoration resulting from the operation on a
very noisy image (SFR = ,6«1,6), Iteration 1 is not stable for o'xz =
2,5x 10-1. In fact we muat weight the prior noisy image so heavily in
order to stabilize the solution that there is essentially no improvement.
Apparently the noise level 73 so high that restoration efforts are futile,
Of course, if additional samples of the image were available, some

improvement may be possible,
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On examining “‘ « noisy image it is obvious that the spatial extent of
the noise fine structure is small compared with the width of the point
spread function, This suggests that the noise fine structure in this case
can be smoothed, since it could not logically be preserved by the imaging
system, A resulting smoothed image is shown in Figure 47, (No
sophistication was used in the smooihing process,)

Figure 48 shows the results of using a 9x9 system and operating on
the smoothed image. The improvement is noticeable. These results
illustrate that even in a low SNR situation in which the detector noise is
appreciable some measures can be taken which may result in restoration

improvement,

Quadrature effects

As previously discussed in the Imaging Equation section, the transfer
from the continuous functions to the discrete version involves some error.
The visual effect of this error is illustrated in Figures 49-51, The
restoration shown in Figure 49 used unity weights, Gimpsont's quadrature
was used in Figure 50, and Gauss quadrature was used in Figure 51.

Under the stress of both image and A matrix noise it is evident that
the more powerful Gauss quadrature is superior. There may be some
question about the small values of % in Figure 49; however, it was found
that decreasing o'xz, in general, has a greater scale eiiect for w, = 1.0

than when one of the other quadratures was used. (This scale change is
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further evident if we consider the problem of numerically integrating to
find the area under a uriform pulse of unity height while using unity
weights, )

The choice of quadrature and its relationship to the MSE is discussed
later in the section entitled "MSE Variation--Choosing the A Matrix

Parameters, "

Comparison of the Phillips=Twomey and MSE Solutions

If we accept the use of successive approxiriations, then the essential
difference between the Phillips-Twomey solution and the MSE solution is
just the initial prior vector used., Figure 52 shows the asymptotic
convergence of the SE vs, iterations for the two solutions. (The SE is
increasing with increasing iterations since the 5x5 systemn used is
approaching the quadrature error limited solution for ), = 0 shown in
Figure 12,)

The figure indicates that the Phillips-Twomey solution has a lower
SE than the MSE solution for iteration 1; however, after 2 iterations the
two solutions differ only slightly in the rate of convergence. In fact, it
is merely a matter of definition as to whick solution reaches the asymp-
totic SE first, That is, iteration 1 for the MSE solution could have been
defined as the zeroith solution, thus shifting the entire MSE solution curve

1 iteration to the left,

i,
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Figure 52. The comparison of the MSE and Phillips-Twomey solutions.
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Dynamic programming restorations

Figures 53-56 illustrate the use of dynamic programming in restoring
a uniform pulse source when R = 1.0, The prior vector solution (Bellman,
1965) was used for Figures 53-55, Notice that the solution for small
prior weighting (Figure 53} is not symmetrical and is poorly behaved as
one progresses toward the initial estimates on the left, This results
because the entire A matrix is not used until the last scalar estimate x

M
is found,

The solutions for the problem Bellman {1965) considered appear to
be more regular for the initial xi' s than the above results shcw. However,
the prior vector he assumed was closer to the true solution for the initial
estimates, This would tend to reduce the initial irregular behavior,

Larger values of prior weighting improve the solution, as shown in
Figures 54 and 55, and it appears that a value of ) between 1 and 10 would
result in even greater improvement,

Results of the area constraint dynamic programming solution are
depicted in Figure 56, These results, alony with results from the matrix
inverse solution using the area constraint, indicute that the area constraint
is less stringent in controlling the characteristic oscillatory solutions
even when prior v-eighting is used,

Based on the results obtained, it appears that the dynamic programe
ming solutions investigated are less effective for optical restoration in

one dimension than the MSE and Phillips-Twomey solutions.
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Figure 50.

Restoration using the dynamic programming solution (78).
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MSE VARIATION-«CHOOSING THE A MATRIX PARAMETERS

This section considers the study of the MSE and the insight the MSE
variation provides in enabling sound computational procedures to be
determined, V/e first present further discussion which defines the A
matrix parameters for the computational scheme we wish to consider.
Next we present and discuss the MSE variation with and without a priori
information. The finai topic presents the procedures whick have been
developed and used in the preceding restorations for choosing the A matrix
parameters,

The form of the MSE we consider here is that found by letting

Kx =o‘x21 and Kn = o'nzl in Equation (152), The resulting MSE is

«l7)
MSE = o-nz tr {[A’A + (o'nz/cxz)ll } (183)

Y/hen the noise variance o'nz is fixed, which is usually the case since it

is determined by the experiment, there are essentially two ways to further

minimize the MSE, We can either reduce c'xz (assume more pseudo-

prior information) or adjust the parameters that govern the A matrix,
Obviously one seeks the best measuring and predicting scheme which

would entail optimal choices of M and N, the gi's, the ai's and the

quadrature, This is indeed a difficult problem. In fact such optimal
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choices would appear, intuitively, to depend upon the assumption of more
prior object information (for example, concentrating on a certain class

of well defined objects). In this paper we do nct consider that such

a priori informatioa is available. Here we have sought to establish
procedures for the general case. To accomplish this we have numerically

studied the MGE as the various parameters were varied.

A Matrix Parameters

There is an uncountably infinite number of one-dimensional schemes
we could consider, V/e have most extensively studied tha scheme which
uses M = N equally spaced measurement locations (gi'a) and M = N equally
spaced prediction points (ari's). The case when unity quadrature weights
were L sed was most extensively studied, but results have also been
obtained for Simpson's and Gauss quadratures, (The ai's were spaced

in accordance with the Gauss method when Gauss quadrature was used,)

The ratios R and R1 were used to relate the diffraction level to the
measuring and predicting intervals being considered. In this case R is
defined as the ratio of the point spread width to the prediction interval
being considered.

We note then that the A matrix parameters are R, Rl, M and the
quadrature weights. Specification of these parameters determines the

A matrix,
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MSE vs, A Matrix Parameters for Larze A Priori Uncertainty

Figures 57-59 show the MSE vs. R relationship for various values
of Rl when a'xz = o, and W, = 1.0, i=1,¢00, M. The MSE was normalized
with respect to noise in Figures 57-58 by considering MSE/crnz. The
MSE in Figure 59 was normalized with respect to dimensionality as well
as noise by considering MSE/o'nZM.

Notice that the MSE is lowest when we measure ''over' the prediction
points (R1 = 1, 0) for small values of diffraction (the cases Austin (1966)
treated when A = I), but when R > 3,8 then Rl = 2,0 is '"best." Barnes
(1966b) was able to prove that the A matrix is positive definite when R is
finite and R1 = 1,0, which demonstra:es that the gi's and ai'a for any
N = M can be chosen such that the MSE is finite, However, as the above
results indicate, this does not preclude the choice of R1 other than unmty
to further reduce the MSE.

Another important and obvious feature can be deduced by noting the
marked MSE increase for the curves of Figure 58 when comparecd with the
curves of Figure 57, Figure 59 shows the absolute MSE increase for
Rl = 1,0 when M increases from 2 to 3, This increase is most apparent
for R > 1,0 and is attributable only to the addition of one more row an-
column in the A matrix. 1’/hen we extrapolate to matrices of larger

dimension (say 24 x 24 as used several times in the simulations) the MSE
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Figure 57. MSE/u-:' vs. R for various values of Rl when ¢ ° = @, M=2
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for R > 1 and the values of Rl shown becomes astrcnomical, This result
again emphz~izes the amplifying effect that excessive diffraction h=3 on
the initial arbitrary noise 1'vel and essentially explains the reason for
the oscillatory solutions when the A matrix dimensionality is large and

cxz is infinite. The next figures we present, which are explained below,

illustrate how finite o-xz alleviates this effect,

MSE vs. A Matrix Parame.ers for Finite # Priori Information

Figure 60 illustrates the MSE behavior for various parameters as

the prior information is varied. The general behavior agrees with

intuition since as prior information increases (o':rz decreases) we infer
the possession of more knowledge about the object and the MSE decreases
accordingly,

Figure 61 shows the measuring and -.redicting intervals for the top
four curves shown in Figure 60, After viewing Figure 61 refer agai. to
Figure 60, Now consider the asymptotic MSE for the top four curves,
These top four curves show the advantage of ckhoosing a measuring interval
which is wider than the prediction interval (Rl is large) since the MSE
decreasee by at least a factor of 107 while the diffraction level, weights,

and M remain fixed, The bottom two curves show a similar reduction for

a smaller diffraction level,
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Figure 61.

Measuring and predicting intervals superimposed with
the point spread function for the top four curves in Figure 60. The

symbols MI and PI represent, respectively, the measuring and
predicting intervals.
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Figure 50 axhibits results for the Ni = 5 case, Figure 62 presents
curves, in the same manner as Figure 50, for the simulated results shown
in the previous section, From Figure 62 it is evident that the prior
weighting necessary to produce the simulations was great enough 8o that
we are operating in the region where the curves blend together, as shown
in Figure 50, In this region choosing Rl large still has an effect on the
14SE, but it is not nearly as pronounced as for the asyniptotic region of
the curves, However, the coriputational error involved in the matrix

inversion process was noticeably reduced by choosing Rl large.

ChooamLme A Matrix Parameters

Now that we have presanted curves showing the general behavior of
the MSE with the A imatrix parameters we discuss the guidelines for
choosing these parameters, These choices depend not only upon the iMSE
but upon other errors, the most prominent being the quadrature error,
the computational error, and the error caused by assuming o'x2 too small,
In choosing these parameters it is evident that we must make these choices
regardless of the diffraction and noise. Thus, although we seck to improve
the distorted ol.ject in the presence of these effects, the diffraction and

noise must be regarded an fixed quantities when making these choices.
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Choosing the quadrature

The determination of which quadrature is '"best" or better than
another is 2 difficult problem, One cannot accurately astimate the
quadrature error without knowledge of the integrand, which for the
restoration problem we have considered is unknown.,

Before discussing the quadrature choice we briefly review the
quadratures we have considered. For a2 more comprehensive treatment
the reader is referred to Kopal (1961), Krylov (1962) or the more tutorial
McCracken and Dorn (1964),

The Gauss quadrature method is a very powerful tool to use in
numerical integration, Here we refer to power as describing the number
of points necessary in the approximating summation to provide a specified
accuracy. To illustrate just how powerful the Gauss method is, consider
that a polynomial of degree m approximates the integrand to a specified
accuracy. Now suppose we use the Gauss system with a summation limit
of M points, The Gauss system is sufficiently powerful that when
m = 2M«~1 the integration is performed exactly with no error, For example,
suppose we decide that the integrand is sufficiently approximated by a
polynomial of degree 49, This means that only 25 points are required to
perform the integration exactly, Simpson's summation, on the other hand,
is only capable of integrating 3rd degree integrands exactly. Herein lies
the major advantage of Gauss quadrature over Simpson!s quadrature (and,

as the above references point out, over essentially all other quadrature:),

s S s it o



187
The only disadvantage of Gauss quadrature in comparison with other
quadratures is one of complexity, The complexity is due to the use of
unequally spaced integrand arguments, This disadvantage is not very
~significant in the optics problem because we can predict the object for
unequally spaced points just as well as equally spaced points, The only
poseible drawback would be the specification of the point spread function
at these points, If the point spread function is analytically approximated,
this would not be a problem. For the case when the point spread function
is measured some extra care may be necessary to ensure that the point
spread function is accurately specified for all ranges of its argument,

Now that we have briefly reviewed the quadratures considercd we
continuc on with the discussion of quadrature choice.

Recall that the total error is comprised of both MSE and quadrature-
error, These two errors are both related to the system dimensionality.
We have seen that increased dimensionality implies increased MSE, but
it is well known that increased dimensionality reduces quadrature-error,
Thus, it is logical to assume that a choice of quadrature should involve
the trade-~off between MSE and quadrature-error. The following results
illustrate this trade=off,

Refer again to Figures 49, 50, and 51, The MSE./trn2 for the Gauss
cage is 1.43 x 102, for the Simpson's case 1,26 x 102, and for unity

weights 1,23 x 102. The fact that the Gauss guadrature resuited in a
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greater MSE:/tl'nz is easily explained, In all three cases the actual number
of points used was equal, but the sffective dimensionality of the Gaues
system is much greate> than either of the other quadratures. Similarly,
the effective dimensionality in the Simpson's case is greater than the unity
weights case., Visually (which is a good measure of total error) the Gauss
gsystem produces a better restoration, Since the MSE actually increased,
but only : dy, the discrepancy between visual error and MSE can .
logically be attributed to a reduction in quadrature error. In fact, it
appears that the reduction in quadrature error more than compensates

for the slight increase in MSE, Thus, in this case one would choose

Gauss quadratura, Furthermore, we can infer from Figures 60 and 62 and

other numerical evidence that as long as one uses sufficient a priori
information to be in the region where the curves blend together, use of

the Gauss quadrature will consistently more than compensate for the slight
increase in MSE. And in this region it is recommended that Gauss
quadrature be used.

On the other hand, as vxz approaches infinity the increased effective
dimecsionality for the more powerful quadratur:cs may increase the MSE
above the compensating reduction in quadrature error, For this region
of small a priori information we could either reduce the Gauss system

dimensionality or perhaps successfully use a less powerful qu~drature.
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Choosing tie ratio of the measuring and predicting intervuls (R1})

The liffraction range considered in this papur isR > 1,0, For
R <1.0, the image becomes a much better prior guess for the object,
and we can heavily weight the image in the restoration procedure.
Consider the images for the Range R > 1,0, For the noise levels
considernd in this paper the image width (noise to noise) is, grossly
speaking, the width of the point spread function, Thus, the prediction
and measuring intervals will be "under' the main lobe of the point s?read
function. V/hen this is the case, as han been demonstrated in Figures 57,
58, and 60, it is profitable to choose R1 larger than unity so that the
measuring interval is wider than the prediction interval., The following
discussion illustrates what is happening to the A matrix elements as Rl
changes and then presents a guide for choosing an upper bound for R1,
Refer again to Figures 57 and 58, The tendency for A to approach a
singular condition for R1 = 1, 0 and increasing R is clearly shown. As
one studies the A matrix elements for the values of R >1,0 and Rl = 1.0,
it is seen that they become more and more alike, On the other hand,
choosing R1 > 1, 6 for values of R > 1, 0 tends to make the A matrix elements
differ, and ge nerally speaking, if Rl is not made too large, the MSE will
decrease. The choice of an upper bound for Rl involves a trade;off

between two factor 3,
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The first is seen in Figure 57, For matrices of smal} dimension

.

it is evicdent that the A matrix will be singular for certain choices of R1
even when R > 1,0, However, it is evident intuitively that if the dimension~

ality is large enough (3x3 or greater) and Rl is chosen only lazge enough

Hal il lm"r‘mﬂu HHINLR R}
AT SN g A A S A

so that the measuring and predicting intervals both lie within the point

1 {:

spread function width, then the A matrix will not be singular. An analytic

proof of this statement is not given, but the available numerical evidence

shows that A is nonsingu’ar for this choice of Rl,

ORI

The second limitation on large Rl is imposed by system noise (crnz).
For R > 1,0 it is evident that as Rl increases above unity then the image
is being measured where the SNR is decreasing., Thus, if the system noisc
: is great enough a choice uf R1 extended to the limit described above may
be suboptimum,

Under these conditions the following guide for choosing R1 is stated.

For matrices of dimensionality 3x3 or greater and R > 1, 0 choose R1 as

’ large as possitle, while ensuring that the measuring interval is "under"
the point spread function and small enough that the measurements are not
excessively noisy. This notion is clearly a compromise between system

noise (d'nz) or SNR and the location of the measurements such that the

diniit BB UHHLL L s UL G
[T TITIRa

E matrix (A'A + o'nzlu-le) is non-singuiar enough to be successfully
inverted.
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Choosing A matrix dimensiona.lisx

Throughout the paper we have assumed that the A matrix is of
dimensionality NxM and that M SN, V&L uM <N we have the over=
determined case in which we measure the image more often than the
number of unknowns we have tc predict, In some problems it is
advantageous, for statistical reasons, to choose M < N and use the over=
determined solution, This case was considered in the simulation presented
in Figure 46. Recall that the image was excessively noisy (SFR = .6-.1.6).
In an effort to restore the object several A matrices with M <N were used,

The dimensionality shown in Figure 46 was 50x11, However, in all of the

cases when M < N no appreciable improvement was apparent, Based on
this evidence, it appears that choosing M <N is of no particular advantage
in the restoration problem, When M = N, then the chouice of how large

to make N or M is to be considered. This choice is discussed as follows.

As previously stated, the MSE is proportional to N, and the quadrature

error is inversely proportional to N, Thus, N should be chosen by
studying the trade«off between MSE and quadrature error. For the ore-

dimensional restorations considered, o-xz was assumed small enough so

that reasonably large matrices could be successfully uved, The largest
matrix used was a 65x65, and it resulted in restoration improvement.

For the one-dimensional objects considered, it appeared that the 48x48

Gauss system was adequate for reducing quadrature error.
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To obtain the same quadrature error for two dimensional objects, the

A matrix dimensionality will increase roughly as Nz compared to N, Thus,

for two dimensional objects we will have to consider more closely the

trade~off between MSE and quadrature error,

Choouil:g O'xz and the number of iterations

The choice of cxz involves the compromise between MSE and the
error involved by assuming too much prior information, One desires to
choose o'xz small enough to enable stable computational results to be
obtained and yet large enough to reduce the smoothing effect or a priori
image weighting,

The simulated results have indicated that o-xz may be sequentially
determined by visually judging restorations for several values o* {2.

It has also been demonstrated that one can circumvent the need -

continually invert matrices for each cxz in order to vary prior information,
Prior information can be easily varied by using successive approximations,

Considering that the other parameters are iixed, a good procedure to

use is to vary cxz until the solution appears (visually) to be stable and

then iterate until computational error limits the restoration.
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SUMMARY AND CONCLUSIONS

Syropsis of the Paper

In this sectiou a brief synopsis of thu entire paper is presented and.
the important results are stated.

The basic problem considered is one of restoring an optical object
which has been diffracted and corrupted by noise. Previous work has
shown that if the object is of finite extent then the restoration process
is limited by noise and not diffraction., After reviewing previous
approaches to the proble:n, it was evident that improvement could be
made by pgoviding for noise in the restoration procedure,

In order to present some insight into the diffraction process the
imaging equation was derived, The form of this equation indicates that
a linear transformation of the object constitutes the basic image~object
relationship and that diffraction implies the obscuration of object detail,
Since numerical techniques were to be u.ed, the discrete version of the
imaging equation was presented and the quadrature error was introduced.
Next the straightforward no-noise matrix inverse solution to the problem

was presented, Two major difficulties in using this solution are that
excessive image accura’ y may aciually be necessary to effect the
solution and that for the diffraction range of interest (R > 1,0) the A

matrix is nearly singular and is difficult to invert,
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The next section presented previous noiseless work by Phillips (1962),
Twomey (1963) and Bellmar, et al, (1964, 1965). Their work demonstrated
that a priori information in the form of a constraint could be successfully
used to alleviate the difficulties just .nentioned,

In ordex to introduce and discuss the uncerta’nty caused by noise,
analytical results for a detection example and for the error variance
obtained in estimating the separation between two point sources were
presented. Here the basic trade-off between diffraction and noise in
regaining obscured object information was presented and discussed in
detail, The basic trade=off is that diffraction essentially amplifies the

prevailing noise level, and in order to regain object infcrmation for
excessive diffraction the SNE. must be increased. |

Turning again to the restoration problem, object estimation in the
presence of additive and detector noise was discussed. Both tie Baysean
and MSE approaches in the estimztion of the object were considered. In
using the Bayest approach it was necessary, because of mathematical
tractability, to use the suboptimum scheme of operating on an image
estimate to perform the restoration, The Baysean approach did provide
insight as to how a priori information enters into the solution, but the
tuboptimal scheme did not indicate the use of a priori information in the
inverse operator, On the other hand, the MSE approach did irdicate

how a priori information can be used in the inverse operator and
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furthermore indicated that the smoothing process in the noiseless case
treated by Phillips (1962) is actually a trade-off between the noise level
and a priori information, Also discussad in the Object Estimation section
was the assumption of high SNR, Using this assumption the Baysean
estimates for Gaussian statistics are equivalent to the MSE estimate,

In the next section simulated object restorations were presented.
Here various parameters were defined which incicated how well the
restoration process performed for various objects and for various
diffraction and noise levels, These results demonstrated that object
restoration is possible, The amount of restoration improvement is
dependent upon both diffraction and noise. A specific statement is that,
generally speaking, improvement is possible for the diffraction range
1,0 <R <10 when the sample mean noise level is as highas 1 to 3
percent of the image maximum,

Next, numerical results on the variation of the MSE were presented
and discussed, For fixed a'nz and diffraction in general the only recourse
to further reduce the MSE is to consider varying the A matrix parameters
or the a priori variance o-xz. The following guidelines were evident from
the results presented in this section, The quadrature used most profitably
was the Gaussian system, For the diffraction range considered the
measuring interval should be chos. .. .. ner equal to or greater than the

predicting interval. The upper limit of the measuring interval width
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should be chosen such that it does not exceed the point spread function
width or include excessively noisy image measurements, It is advisable
touse M = N, The choice of an upper lL.mit cn N involves the trade-off
botween the error caused by excessive weighting of the a priori image
and the improvement in quadrature error, The a priori variance o-xz
should be chosen small enough to obtain an initial stable solution which
can be successively iterated until comyp ational accuracy limite the
restoration, These rosults when applied to the MSE estimate and coupled
with the sequential size estimation procedurs discussed previoucly

constitute the basic computatic . . scheme devzaoped ‘. "his paper.,

Futur. Research

The outstanding applied research need is to actually perform a
restoration experiment which uses the procedures developed in the paper.
Such an experiment would provide information on the more real noise
levels encountered in practice and should lead to the intelligent use of
repeated oampiee of the noisy image and A matrix,

The general theoretical or analytical solution to the problem remain=
to be obtained. To solve this problem it appears that we need to specify
eigenfunctions and eigenvalues for a general inverse imaging kernel, as
discussed by Barnes (1966a). This is indeed a difficult problem, but
certainly object restoration will not be complete until this information i3

available,
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Throughout the simulated results we have considered that the noise is
white and Gaussian, Band limited noise should also be considered. When
bandlimited noise is considered, perhaps the diffraction effects will not
be as severe as those shown in this paper., However, it should be

mentioned that the computational error is not bandlimited,
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APPENDIX

WA

Two=Dimensional Gauss Quadrature

In two dimensions the imaging equation is

et e e

bty

X (€, 1) = [ [ h(g -, nB) x (a,B)drdp (189)

. 2%

ST e e et

The two-dimensional Gauss quadrature ‘or (189) can be written

eeniperontge

(b,-2,)(b,~a,) N N

blEsn) w S % 3 H HhEw,0P )xe b)) (190)

where

@y =iby-a)) +ib -2y,

pm = ’é‘bz"‘z) b ‘}“’z“‘z”’m |

A LSOO A AL L AR L AT T S0 T O AR LD I MRS R LM LSO LM

d and the quantities Yot Vi Hm and Hn are defined from tables of

coefficients for a given N (Krylov, 1962).
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(bz ""z)(bl "l)
4
(190) and define a new summa‘ion index j as follows:

We can bring he constant inside the summation of

jm=1 whenm=1l,n=1
j=N whenm=N, n=l

j-Nz whenm =N, n=N
Thus

2
N

or

N
b, = Z

a, x
i " i=1 id j
If we consider L, image measurements then the final form is

b = Ax (191)

wherc the A matrix has L rows and Nz columns,

Recurrence Relation for Area Constraint

Here we dexive the recurrance relationship (73) which is

0 .
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g - IM(b, c) = min [fM_l(b-a(M)xM, c-waM)]. (192)
/A
V'e define
R 2 N M
= (b, c) = min (x)sminu‘(t =} ¢+ ZIZ a, x-b)]. (193)
4 M *M RNI ™ irl 3 ie=] j:l L
£ % % §
; According to the optimaiity principle (stepwise optimization principl:) we :
(b, ¢) = min[min (F wx et B(F b)) (194) :
, C) = A X, =C a, .x =b, 94) =
M Xp-1 il T t=1 jup D31 :
%) 5
and theze erist axrguments arg, and «Tg, such that the term ir brackets 5

can be writtua
M-l z N M"l
(arg,, arg.) = min {T wx -arg.) +Z(Z a x (gxg)) (195)
- e BT 75, el =1 P1E ey ey BT
g * .xl

Now we have to i nd transformations arg, and arg, which enable (195)

to equal the term in brackets in (194). Thus we equate

M 2 M-l 2
(2 wxi-c) =(Z WX, ~arg ) (196)
i=l i=1 i 2

i




and
N M 2 N M-l >
s “b.)° = - .
el }fl "1 12-:1(531 RTR ALY
From (196)

A8 = C""MM

If we fix i in (197) we obtain

arg, = b'xM‘(M)

where ai(M) = (‘IM’ &N """NM) and is the transpose of the

201

(197)

{198)

(199)

th

column in the A matrix, Using (198) and (199) we can write the recurrence

relation (192),

Computer Programming

The computational results of this paper were obtained using the IBM

1620 and IBM 7094 digital computers, The 1620 was available at Utah

State University, The 7094 was available through the V/estern Data

Processing Center at UCLA in Los Angeles, California,
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% Two facets of computer programmiag should be mentioned, First, §
§ considerable effort vas made to ensure the correct astimation of image g
i :ij_g accuracy, (This effort is discussed under Irnage and A Matrix Accuracy i
% in the Simulated Object Restorations section,) A similar effort was g
? '—g:; made to ensure that the eolutions were correct. A good check of these §
:fgz solutions was available by comparing the last solution vector component g a
% , % in both the matrix inversion solutions and the corresponding dynamic §
g programming solutions. Second, as a further check on the solution —%
% ) accuracy and to study the inversion process, the matrix inverse was :%
% checked for each solution, In all of the cases shown when crx2 was %
z finite, o-xz was assumed small enough » - that no special programming %éi :
i sophistication was required to ensure a correct marrix inverse, When §
i = o‘xz was infinite or very large, results were obtuined on the 1620 which §
‘ allowed the use of excr ssive accuracy (up to 28 significant digits). This §
_ ) ercessive accuracy enabled results to be obtained, as previously presented, :; :
. when the A matrix was nearly singular,
Z As an example of the computer programming necessary to simulate
the reetoration of optical objects, we present the following computer
i program which represents roughly 50 percent of the computational effort,
L This computer program was used to simulate the matrix solutions in the
: restoration problem for the sources composed of cosine pulses from
P . * cos [kn(x~p)] as shown in (166) and (168), The random number subroutine



was obtained from the Western Da’a Processing Center in Los Angeles,

The symbols used and the computational sequen ‘e are indicated 22 the
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